Search results for: hydrothermal stability
3214 Analytical Method Development and Validation of Stability Indicating Rp - Hplc Method for Detrmination of Atorvastatin and Methylcobalamine
Authors: Alkaben Patel
Abstract:
The proposed RP-HPLC method is easy, rapid, economical, precise and accurate stability indicating RP-HPLC method for simultaneous estimation of Astorvastatin and Methylcobalamine in their combined dosage form has been developed.The separation was achieved by LC-20 AT C18(250mm*4.6mm*2.6mm)Colum and water (pH 3.5): methanol 70:30 as mobile phase, at a flow rate of 1ml/min. wavelength of this dosage form is 215nm.The drug is related to stress condition of hydrolysis, oxidation, photolysis and thermal degradation.Keywords: RP- HPLC, atorvastatin, methylcobalamine, method, development, validation
Procedia PDF Downloads 3363213 Effect of Packaging Methods and Storage Time on Oxidative Stability of Traditional Fermented Sausage
Authors: Vladimir M. Tomović, Branislav V. Šojić, Predrag M. Ikonić, Ljiljana S. Petrović, Anamarija I. Mandić, Natalija R. Džinić, Snežana B. Škaljac, Tatjana A. Tasić, Marija R. Jokanović
Abstract:
In this paper influence of packaging method (vacuum and modified atmosphere packaging) on lipid oxidative stability and sensory properties of odor and taste of the traditional sausage Petrovská klobása were examined. These parameters were examined during storage period (7 months). In the end of storage period, vacuum packed sausage showed better oxidative stability. Propanal content was significantly lower (P<0.05) in vacuum packed sausage compared to these values in unpacked and modified atmosphere packaging sausage. Hexanal content in vacuum packed sausage was 1.85 µg/g, in MAP sausage 2.98 µg/g and in unpacked sausage 4.94 µg/g. After 2 and 7 months of storage, sausages packed in vacuum had the highest grades for sensory properties of odor and taste.Keywords: lipid oxidation, MAP, sensory properties, traditional sausage, vacuum
Procedia PDF Downloads 4663212 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics
Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer
Abstract:
Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.Keywords: Hamilton's principle of least action, particle-based method, hyper-elasticity, analysis of stability
Procedia PDF Downloads 3413211 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 4493210 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants
Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López
Abstract:
In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization
Procedia PDF Downloads 943209 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles
Authors: Mahmoud Said Jneid, Péter Harth
Abstract:
EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control
Procedia PDF Downloads 833208 Determination of Anchor Lengths by Retaining Walls
Authors: Belabed Lazhar
Abstract:
The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results.Keywords: retaining walls, anchoring, stability, mechanical modeling, safety
Procedia PDF Downloads 3523207 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis
Procedia PDF Downloads 983206 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications
Authors: Syed Kamran Sami, Saqib Siddiqui
Abstract:
In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor
Procedia PDF Downloads 2813205 Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk
Authors: Owamah Hilary, O. C. Izinyon
Abstract:
Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design.Keywords: biogas, inoculum, model development, stability assessment
Procedia PDF Downloads 4293204 Comparative Studies of Distributed and Aggregated Energy Storage Configurations in Direct Current Microgrids
Authors: Frimpong Kyeremeh, Albert Y. Appiah, Ben B. K. Ayawli
Abstract:
Energy storage system (ESS) is an essential part of a microgrid (MG) because of its immense benefits to the economics and the stability of MG. For a direct current (DC) MG (DCMG) in which the generating units are mostly variable renewable energy generators, DC bus voltage fluctuation is inevitable; hence ESS is vital in managing the mismatch between load demand and generation. Besides, to accrue the maximum benefits of ESS in the microgrid, there is the need for proper sizing and location of the ESSs. In this paper, a performance comparison is made between two configurations of ESS; distributed battery energy storage system (D-BESS) and an aggregated (centralized) battery energy storage system (A-BESS), on the basis of stability and operational cost for a DCMG. The configuration consists of four households with rooftop PV panels and a wind turbine. The objective is to evaluate and analyze the technical efficiencies, cost effectiveness as well as controllability of each configuration. The MG is first modelled with MATLAB Simulink then, a mathematical model is used to determine the optimal size of the BESS that minimizes the total operational cost of the MG. The performance of the two configurations would be tested with simulations. The two configurations are expected to reduce DC bus voltage fluctuations, but in the cases of voltage stability and optimal cost, the best configuration performance will be determined at the end of the research. The work is in progress, and the result would help MG designers and operators to make the best decision on the use of BESS for DCMG configurations.Keywords: aggregated energy storage system, DC bus voltage, DC microgrid, distributed battery energy storage, stability
Procedia PDF Downloads 1573203 Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems
Authors: M. H. M. Rashid
Abstract:
A Banach space operator T obeys property (gm) if the isolated points of the spectrum σ(T) of T which are eigenvalues are exactly those points λ of the spectrum for which T − λI is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T.Keywords: Weyl's Theorem, Weyl Spectrum, Polaroid operators, property (gm)
Procedia PDF Downloads 1783202 Stability of Composite Struts Using the Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The aim of this paper is to examine the behavior of elastic stability of reinforced and composite concrete struts with axial loads. The objective of this study is to verify the ability of the Modified Newmark Method to include geometric non-linearity in addition to non-linearity due to cracking, and also to show the advantage of the established method to reconsider an ignored minor parameter in mathematical modeling, such as the effect of the cracking by extra geometric bending moment Ny on cross-section properties. The purpose of this investigation is not to present some new results for the instability of reinforced or composite concrete columns. Therefore, no kinds of non-linearity involved in the problem are considered here. Only as mentioned, it is a part of the verification of the new established method to solve two kinds of non-linearity P- δ effect and cracking together simultaneously. However, the Modified Newmark Method can be used to solve non-linearity of materials and time-dependent behavior of concrete. However, since it is out of the scope of this article, it is not considered.Keywords: stability, buckling, modified newmark method, reinforced
Procedia PDF Downloads 3353201 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 763200 A Case Study on the Long-Term Stability Monitoring of Underground Powerhouse Complex Using Geotechnical Instrumentation
Authors: Sudhakar Kadiyala, Sripad R. Naik
Abstract:
Large cavern in Bhutan Himalayas is being monitored since the construction period. The behavior of the cavern is being monitored for last 16 years. Instrumentation includes measurement of convergence of high walls by geodetic monitoring, load on the support systems with load cells and instrumented bolts. Analysis of the results of instrumentation showed that during the construction period of the cavern, the convergence of the cavern varied from 181 - 233 mm in the unit bay area with maximum convergence rate of 2.80mm/day. Whereas during the operational period the total convergence observed was in the range of 21 to 45 mm during a period of 11.30 years with convergence rate of 0.005 to 0.011 mm/day. During the last five years, there were no instances of high tensile stress recorded by the instrumented bolts. Load on the rock bolts have shown stabilization trend at most of the locations. This paper discusses in detail the results of long-term monitoring using the geotechnical instruments and how the data is being used in 3D numerical model to confirm the stability of the cavern.Keywords: convergence, displacements, geodetic monitoring, long-term stability
Procedia PDF Downloads 1803199 In situ High Temperature Characterization of Diamond-Like Carbon Films
Authors: M. Rouhani, F. C. N. Hong, Y. R. Jeng
Abstract:
The tribological performance of DLC films is limited by graphitization at elevated temperatures. Despite of numerous studies on the thermal stability of DLC films, a comprehensive in-situ characterization at elevated temperature is still lacking. In this study, DLC films were deposited using filtered cathodic arc vacuum method. Thermal stability of the films was characterized in-situally using a synchronized technique integrating Raman spectroscopy and depth-sensing measurements. Tests were performed in a high temperature chamber coupled with feedback control to make it possible to study the temperature effects in the range of 21 – 450 ̊C. Co-located SPM and Raman microscopy maps at different temperature over a specific area on the surface of the film were prepared. The results show that the thermal stability of the DLC films depends on their sp3 content. Films with lower sp3 content endure graphitization during the temperature-course used in this study. The graphitization is accompanied with significant changes in surface roughness and Raman spectrum of the film. Surface roughness of the films start to change even before graphitization transformation could be detected using Raman spectroscopy. Depth-sensing tests (nanoindentation, nano-scratch and wear) endorse the surface roughness change seen before graphitization occurrence. This in-situ study showed that the surface of the films is more sensitive to temperature rise compared to the bulk. We presume the changes observed in films hardness, surface roughness and scratch resistance with temperature rise, before graphitization occurrence, is due to surface relaxation.Keywords: DLC film, nanoindentation, Raman spectroscopy, thermal stability
Procedia PDF Downloads 1993198 Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries
Authors: Min-Hwa Lim, Mi-Jeong Park, Ho-Young Jung
Abstract:
Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation.Keywords: vanadium redox flow battery, ion exchange membrane, permeability, degradation, chemical stability
Procedia PDF Downloads 2993197 Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃
Authors: Kaiyuan Chena, Senentxu Lanceros-Méndeza, Laijun Liub, Qi Zhanga
Abstract:
0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite.Keywords: permittivity, relaxor, electronic ceramics, activation energy
Procedia PDF Downloads 1023196 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller
Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam
Abstract:
In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control
Procedia PDF Downloads 4873195 Exploring Coordination between Monetary and Macroprudential Policies Using a Monetary Policy Procyclicality Ratio
Authors: Lukasz Kurowski, Paweł Smaga
Abstract:
We explore the procyclicality of monetary policy decisions towards the financial cycle in the 1995−2015 period on a sample of six central banks. Using interest rate paths and the credit-to-GDP gap to construct a monetary policy procyclicality ratio, we provide evidence that monetary policy procyclicality was high in BoE and CNB and low in Riksbank and ECB. The results support the need for coordination between macroprudential and monetary policies, for example, by including financial stability considerations to the inflation targeting strategy.Keywords: central bank, financial stability, macroprudential policy, monetary policy
Procedia PDF Downloads 3723194 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66
Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri
Abstract:
Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.Keywords: heteropoly acid, graphene oxide, MOF, tetracycline
Procedia PDF Downloads 1333193 Creating Legitimate Expectations in International Energy Investments: Role of the Stability Provisions
Authors: Rahmi Kopar
Abstract:
Legitimate expectations principle is considered one of the most dominant elements of the Fair and Equitable Treatment Standard which is today’s most relied upon treaty standard. Since its utilization by arbitral tribunals is relatively new, the contours of the legitimate expectations concept under investment treaty law have not been precisely defined yet. There are various fragmented views arising both from arbitral tribunals and scholarly writings with respect to its limits and use even though the principle is ‘firmly rooted in arbitral practice.’ International energy investments, due to their characteristics, are more prone to certain types of risks, especially the political risks. Thus, there are several mechanisms to protect an energy investment against those risks. Stabilisation is one of these investment protection methods. Stability provisions can be found under domestic legislations, as a contractual clause, or as a separate legal stability agreement. This paper will start by examining the roots of the contentious concept of legitimate expectations with reference to its application in domestic legal systems from where the doctrine under investment treaty law context was transplanted. Then the paper will turn to the investment treaty law and analyse the main contours of the doctrine as understood and applied by arbitral tribunals. 'What gives rise to the investor’s legitimate expectations?' question is answered mainly by three categories of sources: the general legal framework prevalent in a host state, the representations made by the officials or organs of a host state, and the contractual commitments. However, there is no unanimity among the arbitral tribunals and the scholars with respect to the form these sources should take. At this point, the study will discuss the sources of a stability provision and the effect of these stability provisions found in various legal sources in creating a legitimate expectation for the investor. The main questions to be discussed in this paper are as follows: a) Do the stability provisions found under different legal sources create a legitimate expectation on the investor side? b) If yes, what levels of legitimate expectations do they create? These questions will be answered mainly by reference to investment treaty jurisprudence.Keywords: fair and equitable treatment standard, international energy investments, investment protection, legitimate expectations, stabilization
Procedia PDF Downloads 2143192 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil
Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina
Abstract:
This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis
Procedia PDF Downloads 2093191 Dependence of Free Fatty Acid and Chlorophyll Content on Thermal Stability of Extra Virgin Olive Oil
Authors: Yongjun Ahn, Sung Gyu Choi, Seung-Yeop Kwak
Abstract:
Selective removal of free fatty acid (FFA) and chlorophyll in extra virgin olive oil (EVOO) is necessary to enhance the thermal stability in the condition of the deep frying. In this work, we demonstrated improving the thermal stability of EVOO by selective removal of free fatty acid and chlorophyll using (3-Aminopropyl)trimethoxysilane (APTMS) functionalized mesoporous silica with controlled pore size. The adsorption kinetics of free fatty acid and chlorophyll into the mesoporous silica were quantitatively analyzed by Freundlich and Langmuir model. The highest chlorophyll adsorption efficiency was shown in the pore size at 5 nm, suggesting that the interaction between the silica and the chlorophyll could be optimized at this point. The amino-functionalized mesoporous silica showed drastically improved removal efficiency of FFA than the bare silica. Moreover, beneficial compounds like tocopherol and phenolic compounds maintained even after adsorptive removal. Extra virgin olive oil treated by aminopropyl-functionalized silica had a smoke point high enough to be used as commercial frying oil. Based on these results, it is expected to attract the considerable amount of interest toward facile adsorptive refining process of EVOO using pore size controlled and amino-functionalized mesoporous silica.Keywords: mesoporous silica, extra virgin olive oil, selective adsorption, thermal stability
Procedia PDF Downloads 2413190 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin
Authors: Yulistiani, Muhammad Amin, Fasich
Abstract:
A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential
Procedia PDF Downloads 3393189 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 4123188 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 3273187 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 3713186 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 3763185 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: Napat Hataivichian
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.Keywords: alumina, dehydrogenation, platinum, transition metal
Procedia PDF Downloads 310