Search results for: hybrid ship
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1926

Search results for: hybrid ship

1536 Building Scalable and Accurate Hybrid Kernel Mapping Recommender

Authors: Hina Iqbal, Mustansar Ali Ghazanfar, Sandor Szedmak

Abstract:

Recommender systems uses artificial intelligence practices for filtering obscure information and can predict if a user likes a specified item. Kernel mapping Recommender systems have been proposed which are accurate and state-of-the-art algorithms and resolve recommender system’s design objectives such as; long tail, cold-start, and sparsity. The aim of research is to propose hybrid framework that can efficiently integrate different versions— namely item-based and user-based KMR— of KMR algorithm. We have proposed various heuristic algorithms that integrate different versions of KMR (into a unified framework) resulting in improved accuracy and elimination of problems associated with conventional recommender system. We have tested our system on publically available movies dataset and benchmark with KMR. The results (in terms of accuracy, precision, recall, F1 measure and ROC metrics) reveal that the proposed algorithm is quite accurate especially under cold-start and sparse scenarios.

Keywords: Kernel Mapping Recommender Systems, hybrid recommender systems, cold start, sparsity, long tail

Procedia PDF Downloads 338
1535 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador

Procedia PDF Downloads 269
1534 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds

Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani

Abstract:

The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.

Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS

Procedia PDF Downloads 180
1533 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 162
1532 Project HDMI: A Hybrid-Differentiated Mathematics Instruction for Grade 11 Senior High School Students at Las Piñas City Technical Vocational High School

Authors: Mary Ann Cristine R. Olgado

Abstract:

Diversity in the classroom might make it difficult to promote individualized learning, but differentiated instruction that caters to students' various learning preferences may prove to be beneficial. Hence, this study examined the effectiveness of Hybrid-Differentiated Mathematics Instruction (HDMI) in improving the students’ academic performance in Mathematics. It employed the quasi-experimental research design by using a comparative analysis of the two variables: the experimental and control groups. The learning styles of the students were identified using the Grasha-Riechmann Student Learning Style Scale (GRSLSS), which served as the basis for designing differentiated action plans in Mathematics. In addition, adapted survey questionnaires, pre-tests, and post-tests were used to gather information and were analyzed using descriptive and correlational statistics to find the relationship between variables. The experimental group received differentiated instruction for a month, while the control group received traditional teaching instruction. The study found that Hybrid-Differentiated Mathematics Instruction (HDMI) improved the academic performance of Grade 11-TVL students, with the experimental group performing better than the control group. This program has effectively tailored the teaching methods to meet the diverse learning needs of the students, fostering and enhancing a deeper understanding of mathematical concepts in Statistics & Probability, both within and beyond the classroom.

Keywords: differentiated instruction, hybrid, learning styles, academic performance

Procedia PDF Downloads 61
1531 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki

Abstract:

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Keywords: fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm

Procedia PDF Downloads 495
1530 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 122
1529 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 335
1528 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems

Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib

Abstract:

We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.

Keywords: thin films, photovoltaic, hybrid systems, heterojunction

Procedia PDF Downloads 276
1527 Cloud Computing: Major Issues and Solutions

Authors: S. Adhirai Subramaniyam, Paramjit Singh

Abstract:

This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations.

Keywords: cloud, cloud computing, mobile cloud computing, private cloud, public cloud, hybrid cloud, SAAS, PAAS, IAAS, cloud security

Procedia PDF Downloads 343
1526 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 81
1525 Technical Assessment of Utilizing Electrical Variable Transmission Systems in Hybrid Electric Vehicles

Authors: Majid Vafaeipour, Mohamed El Baghdadi, Florian Verbelen, Peter Sergeant, Joeri Van Mierlo, Kurt Stockman, Omar Hegazy

Abstract:

The Electrical Variable Transmission (EVT), an electromechanical device, can be considered as an alternative solution to the conventional transmission system utilized in Hybrid Electric Vehicles (HEVs). This study present comparisons in terms of fuel consumption, power split, and state of charge (SoC) of an HEV containing an EVT to a conventional parallel topology and a series topology. To this end, corresponding simulations of these topologies are all performed in presence of control strategies enabling battery charge-sustaining and efficient power split. The power flow through the components of the vehicle are attained, and fuel consumption results of the considered cases are compared. The investigation of the results indicates utilizing EVT can provide significant added values in HEV configurations. The outcome of the current research paves its path for implementation of design optimization approaches on such systems in further research directions.

Keywords: Electrical Variable Transmission (EVT), Hybrid Electric Vehicle (HEV), parallel, series, modeling

Procedia PDF Downloads 238
1524 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort

Procedia PDF Downloads 231
1523 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction

Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani

Abstract:

Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.

Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse

Procedia PDF Downloads 88
1522 Life Cycle Cost Evaluation of Structures with Hysteretic Dampers

Authors: Jinkoo Kim, Hyungoo Kang, Hyungjun Shin

Abstract:

In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time.

Keywords: slit dampers, friction dampers, seismic retrofit, life cycle cost, FEMA P-58, PACT

Procedia PDF Downloads 326
1521 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 185
1520 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes

Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi

Abstract:

The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.

Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm

Procedia PDF Downloads 303
1519 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting

Procedia PDF Downloads 82
1518 An Analysis of Conditions for Efficiency Gains in Large ICEs Using Cycling

Authors: Bauer Peter, Murillo Jenny

Abstract:

This paper investigates the bounds of achievable fuel efficiency improvements in engines due to cycling between two operating points assuming a series hybrid configuration . It is shown that for linear bsfc dependencies (as a function of power), cycling is only beneficial if the average power needs are smaller than the power at the optimal bsfc value. Exact expressions for the fuel efficiency gains relative to the constant output power case are derived. This asymptotic analysis is then extended to the case where transient losses due to a change in the operating point are also considered. The case of the boundary bsfc trajectory where constant power application and cycling yield the same fuel consumption.is investigated. It is shown that the boundary bsfc locations of the second non-optimal operating points is hyperbolic. The analysis of the boundary case allows to evaluate whether for a particular engine, cycling can be beneficial. The introduced concepts are illustrated through a number of real world examples, i.e. large production Diesel engines in series hybrid configurations.

Keywords: cycling, efficiency, bsfc, series hybrid, diesel, operating point

Procedia PDF Downloads 504
1517 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.

Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes

Procedia PDF Downloads 167
1516 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations

Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle

Abstract:

This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.

Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal

Procedia PDF Downloads 117
1515 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu

Abstract:

An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification

Procedia PDF Downloads 441
1514 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam

Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun

Abstract:

Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.

Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating

Procedia PDF Downloads 312
1513 Potentiality of Litchi-Fodder Based Agroforestry System in Bangladesh

Authors: M. R. Zaman, M. S. Bari, M. Kajal

Abstract:

A field experiment was conducted at the Agroforestry and Environment Research Field, Hajee Mohammad Danesh Science and Technology University, Dinajpur during 2013 to investigate the potentiality of three napier fodder varieties under Litchi orchard. The experiment was consisted of 2 factors RCBD with 3 replications. Among the two factors, factor A was two production systems; S1= Litchi + fodder and S2 = Fodder (sole crop); another factor B was three napier varieties: V1= BARI Napier -1 (Bazra), V2= BARI Napier - 2 (Arusha) and V3= BARI Napier -3 (Hybrid). The experimental results revealed that there were significant variation among the varieties in terms of leaf growth and yield. The maximum number of leaf plant -1 was recorded in variety Bazra (V1) whereas the minimum number was recorded in hybrid variety (V3).Significantly the highest (13.75, 14.53 and14.84 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was also recorded in variety Bazra whereas the lowest (5.89, 6.36 and 9.11 tha-1 at 1st, 2nd v and 3rd harvest respectively) yield was in hybrid variety. Again, in case of production systems, there were also significant differences between the two production systems were founded. The maximum number of leaf plant -1 was recorded under Litchi based AGF system (T1) whereas the minimum was recorded in open condition (T2). Similarly, significantly the highest (12.00, 12.35 and 13.31 tha-1 at 1st, 2nd and 3rd harvest respectively) yield of napier was recorded under Litchi based AGF system where as the lowest (9.73, 10.47 and 11.66 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was recorded in open condition i.e. napier in sole cropping. Furthermore, the interaction effect of napier variety and production systems were also gave significant deviation result in terms of growth and yield. The maximum number of leaf plant -1 was recorded under Litchi based AGF systems with Bazra variety whereas the minimum was recorded in open condition with hybrid variety. The highest yield (14.42, 16.14 and 16.15 tha-1 at 1st, 2nd and 3rd harvest respectively) of napier was found under Litchi based AGF systems with Bazra variety. Significantly the lowest (5.33, 5.79 and 8.48 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was found in open condition i.e. sole cropping with hybrid variety. In case of the quality perspective, the highest nutritive value (DM, ASH, CP, CF, EE, and NFE) was found in Bazra (V1) and the lowest value was found in hybrid variety (V3). Therefore, the suitability of napier production under Litchi based AGF system may be ranked as Bazra > Arusha > Hybrid variety. Finally, the economic analysis showed that maximum BCR (5.20) was found in the Litchi based AGF systems over sole cropping (BCR=4.38). From the findings of the taken investigation, it may be concluded that the cultivation of Bazra napier varieties in the floor of Litchi orchard ensures higher revenue to the farmers compared to its sole cropping.

Keywords: potentiality, Litchi, fodder, agroforestry

Procedia PDF Downloads 323
1512 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete

Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam

Abstract:

Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.

Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry

Procedia PDF Downloads 326
1511 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 122
1510 Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle

Authors: Pratyush Agnihotri

Abstract:

This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments.

Keywords: fixed wing, hybrid, VTOL, UAV

Procedia PDF Downloads 17
1509 The Access to the City in the Medellín Urban Experience

Authors: Mansilla, Juan Camilo

Abstract:

According to many studies, public space in the cities of Global South is constantly morcellated and captured by a multiplicity of actors in a permanent struggle for power. This imposed public space restricts the access to services and political actions to many inhabitants. The author has conducted several focus group sessions using video in a reflective mode with low-income communities in Medellín, Colombia in order to study how people in this city are shift from a physical public space to a hybrid public space shaped by internet. Beyond the fragmented city and the violent urban context manifested by participants, these activities have highlighted how the access to the city is currently going through a dialectic movement between the physical and the digital space. The purpose of this article is to make explicit the link between this hybrid public space and the boundaries of exclusion in the city. Urban marginality is closely related with the idea of access and space. Low-income communities in Medellín assume the digital realm like a “not controlled space” of resistance, where alternative ways of expression like hip hop movement, graffiti, dance, video and virtual communities produce effective changes in the physical realm.

Keywords: access to the city, hybrid public space, low-income communities, Medellín, urban marginality

Procedia PDF Downloads 492
1508 High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production

Authors: V. M. Levshakov, N. A. Steshenkova, N. A. Nosyrev

Abstract:

Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”.

Keywords: flat sections, hybrid laser-arc welding, plasma welding, plasmatron

Procedia PDF Downloads 448
1507 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library

Authors: Donggun Lee, Q-Han Park

Abstract:

Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.

Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization

Procedia PDF Downloads 148