Search results for: hourly charge rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8876

Search results for: hourly charge rate

8486 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: capacitance, conductance, prestressed concrete, susceptance

Procedia PDF Downloads 409
8485 Effects of Tensile Pre-Stresses on Corrosion Behavior of AISI 304 Stainless Steel in 1N H2SO4

Authors: Sami Ibrahim Jafar, Israa Abud Alkadir, Samah Abdul Kareem Khashin

Abstract:

The aim of this work is to assess the influence of tensile pre-stresses on the microstructure and corrosion behavior of the AISI304 stainless steel in 1N H2SO4 austenitic stainless steel. Samples of this stainless steel either with pre-stresses, corresponding to [255, 305, 355, 405, 455, 505, 555, 605 and σf] MPa induced by tensile tests, or without pre-stresses (as received), were characterized regarding their microstructure to investigate the pre-tensile stress effects on the corrosion behavior. The results showed that the corrosion rate of elastic pre-stresses 304 stainless steel was very little increased compared with that of as received specimens. The corrosion rate increases after applying pre-stress between (σ255 - σ 455) MPa. The microstructure showed that the austenitic grains begin to deform in the direction of applied pre-stresses. The maximum hardness at this region was (229.2) Hv, but at higher pre-stress (σ455 – σ 605) MPa unanticipated occurrence, the corrosion rate decreases. The microstructure inspection shows the deformed austenitic grain and ά-martensitic phase needle are appeared inside austenitic grains and the hardness reached the maximum value (332.433) Hv. The results showed that the corrosion rate increases at the values of pre-stresses between (σ605 – σf) MPa., which is inspected the result. The necking of gauge length of specimens occurs in specimens and this leads to deterioration in original properties and the corrosion rate reaches the maximum value.

Keywords: tensile pre-stresses, corrosion rate, austenitic stainless steel, hardness

Procedia PDF Downloads 403
8484 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 316
8483 Commodity Price Shocks and Monetary Policy

Authors: Faisal Algosair

Abstract:

We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification.

Keywords: business cycle, commodity price, exchange rate, global financial cycle

Procedia PDF Downloads 92
8482 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 269
8481 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion

Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay

Abstract:

Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.

Keywords: DFT, picolinate, IR, Raman, nonlinear optic

Procedia PDF Downloads 495
8480 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release

Authors: Monika Patel, Kazuaki Matsumura

Abstract:

Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.

Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS

Procedia PDF Downloads 204
8479 Separate Production of Hydrogen and Methane from Ethanol Wastewater Using Two-Stage UASB: Micronutrient Transportation

Authors: S. Jaikeaw, S. Chavadej

Abstract:

The objective of this study was to determine the effects of COD loading rate on hydrogen and methane production and micronutrient transportation using a two-stage upflow anaerobic sludge blanket (UASB) system under mesophilic temperature (37°C) with a constant recycle ratio of 1:1 (final effluent flow rate: feed flow rate). The first (hydrogen) UASB unit having 4 L liquid holding volume was controlled at pH 5.5 but the second (methane) UASB unit having 24 L liquid holding volume had no pH control. The two-stage UASB system operated at different COD loading rates from 8 to 20 kg/m³d based on total UASB working volume. The results showed that, at the optimum COD loading rate of 13 kg/m³d, the produced gas from the hydrogen UASB unit contained 1.5% H₂, 16.5% CH₄, and 82% CO₂ with H₂S of 252 ppm and also provided a hydrogen yield of 1.66 mL/g COD removed (or 0.56 mL/g COD applied) and a specific hydrogen production rate of 156.85 ml H₂/LRd (or 5.12 ml H₂/g MLVSS d). Under the optimum COD loading rate, the produced gas from the methane UASB unit mainly contained methane and carbon dioxide without hydrogen of 74 and 26%, respectively with hydrogen sulfide of 287 ppm and the system also provided a maximum methane yield of 407.00 mL/g COD removed (or 263.23 mL/g COD applied) and a specific methane production rate of 2081.44 ml CH₄/LRd (or 99.75 ml CH₄/g MLVSS d). Under the optimum COD loading rate, all micronutrients markedly dropped by the sulfide precipitation reactions. The reduction of micronutrients mostly appeared in the methane UASB unit. Under the studied conditions, both Co and Ni were found to be greatly precipitated out, causing the deficiency to microbial activity. It is hypothesized that an addition of both Co and Ni can improve the methanogenic activity.

Keywords: hydrogen and methane production, ethanol wastewater, a two-stage upflow anaerobic blanket (UASB) system, mesophillic temperature, microbial concentration (MLVSS), micronutrients

Procedia PDF Downloads 283
8478 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 319
8477 Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide

Authors: B. Oji, O. Olaniran

Abstract:

The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate.

Keywords: Al-Mg-Si alloy, AutoLab potentiostat, Cassava Peel Ash, CPA, hybrid composite, stir-cast method

Procedia PDF Downloads 125
8476 Implementation of a PDMS Microdevice for the Improved Purification of Circulating MicroRNAs

Authors: G. C. Santini, C. Potrich, L. Lunelli, L. Vanzetti, S. Marasso, M. Cocuzza, C. Pederzolli

Abstract:

The relevance of circulating miRNAs as non-invasive biomarkers for several pathologies is nowadays undoubtedly clear, as they have been found to have both diagnostic and prognostic value able to add fundamental information to patients’ clinical picture. The availability of these data, however, relies on a time-consuming process spanning from the sample collection and processing to the data analysis. In light of this, strategies which are able to ease this procedure are in high demand and considerable effort have been made in developing Lab-on-a-chip (LOC) devices able to speed up and standardise the bench work. In this context, a very promising polydimethylsiloxane (PDMS)-based microdevice which integrates the processing of the biological sample, i.e. purification of extracellular miRNAs, and reverse transcription was previously developed in our lab. In this study, we aimed at the improvement of the miRNA extraction performances of this micro device by increasing the ability of its surface to absorb extracellular miRNAs from biological samples. For this purpose, we focused on the modulation of two properties of the material: roughness and charge. PDMS surface roughness was modulated by casting with several templates (terminated with silicon oxide coated by a thin anti-adhesion aluminum layer), followed by a panel of curing conditions. Atomic force microscopy (AFM) was employed to estimate changes at the nanometric scale. To introduce modifications in surface charge we functionalized PDMS with different mixes of positively charged 3-aminopropyltrimethoxysilanes (APTMS) and neutral poly(ethylene glycol) silane (PEG). The surface chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) and the number of exposed primary amines was quantified with the reagent sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (s-SDTB). As our final end point, the adsorption rate of all these different conditions was assessed by fluorescence microscopy by incubating a synthetic fluorescently-labeled miRNA. Our preliminary analysis identified casting on thermally grown silicon oxide, followed by a curing step at 85°C for 1 hour, as the most efficient technique to obtain a PDMS surface roughness in the nanometric scaleable to trap miRNA. In addition, functionalisation with 0.1% APTMS and 0.9% PEG was found to be a necessary step to significantly increase the amount of microRNA adsorbed on the surface, therefore, available for further steps as on-chip reverse transcription. These findings show a substantial improvement in the extraction efficiency of our PDMS microdevice, ultimately leading to an important step forward in the development of an innovative, easy-to-use and integrated system for the direct purification of less abundant circulating microRNAs.

Keywords: circulating miRNAs, diagnostics, Lab-on-a-chip, polydimethylsiloxane (PDMS)

Procedia PDF Downloads 312
8475 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 123
8474 Impact of Different Modulation Techniques on the Performance of Free-Space Optics

Authors: Naman Singla, Ajay Pal Singh Chauhan

Abstract:

As the demand for providing high bit rate and high bandwidth is increasing at a rapid rate so there is a need to see in this problem and finds a technology that provides high bit rate and also high bandwidth. One possible solution is by use of optical fiber. Optical fiber technology provides high bandwidth in THz. But the disadvantage of optical fiber is of high cost and not used everywhere because it is not possible to reach all the locations on the earth. Also high maintenance required for usage of optical fiber. It puts a lot of cost. Another technology which is almost similar to optical fiber is Free Space Optics (FSO) technology. FSO is the line of sight technology where modulated optical beam whether infrared or visible is used to transfer information from one point to another through the atmosphere which works as a channel. This paper concentrates on analyzing the performance of FSO in terms of bit error rate (BER) and quality factor (Q) using different modulation techniques like non return to zero on off keying (NRZ-OOK), differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK) using OptiSystem software. The findings of this paper show that FSO system based on DQPSK modulation technique performs better.

Keywords: attenuation, bit rate, free space optics, link length

Procedia PDF Downloads 343
8473 Determining the Nitrogen Mineralization Rate by Industrially Manufactured Organic Fertilizers on Alfisol in Southwestern Nigeria

Authors: Ayeni Leye Samuel

Abstract:

Laboratory incubation study was carried out at Adeyemi College of Education, Ondo Southwestern Nigeria to determine the rate of NO3-N, NH4-N, total N, OC and available P released to the soil samples collected from Okitipupa mangrove forest. The soil samples were incubated with organic (OG), organomineral (OMF) and NPK 15:15:15 (NPKF) fertilizers. Organic and organomineral fertilizers were separately applied at the rate of 0, 0.25 and 0.5mg/100 g soil while NPKF was applied at the rate of 0.002g/100g soil. The treatments were replicated three times and arranged on CRD. The treatments were incubated for 90 days. Compared with control, OG and NPKF at all rates significantly increased (p<0.05) soil NH4-N, NO3-N, total N and available P. The order of increase in NH4-N were 10t/ha OMF> 5t/ha OMF> 5t/ha OG>10t/ha OG>control>400 kg/ha while the order of increase in NO3-N were 5t/ha OMF>10t/ha OMF>10t/ha OG>5t/ha OG>control>400 kg/ha NPKF. 5t/ha OMF had the highest, 5t/ha OMF recorded the highest pH, 5t/ha OG had the highest OC while 10t/ha OG had the highest available P.

Keywords: c/n ratio, immobilization, incubation study, organomineral fertilizer

Procedia PDF Downloads 321
8472 Thermal Diffusion of Photovoltaic Organic Semiconductors Determined by Scanning Photothermal Deflection Technique

Authors: K.L. Chiu, Johnny K. W. Ho, M. H. Chan, S. H. Cheung, K. H. Chan, S.K. So

Abstract:

Thermal diffusivity is an important quantity in heat conduction. It measures the rate of heat transfer from the hot side to the cold side of a material. In solid-state materials, thermal diffusivity reveals information related to morphologies and solid quality, as thermal diffusivity can be affected by microstructures. However, thermal diffusivity studies on organic semiconductors are very limited. In this study, scanning photothermal deflection (SPD) technique is used to study the thermal diffusivities of different classes of semiconducting polymers. The reliability of the technique was confirmed by crossing-checking our SPD derived experimental values of different reference materials with their known diffusivities from the literature. To show that thermal diffusivity determination is a potential tool for revealing microscopic properties of organic photovoltaic semiconductors, SPD measurements were applied to various organic semiconducting films with different crystallinities. It is observed that organic photovoltaic semiconductors possess low thermal diffusivity, with values in the range of 0.3mm²/s to 1mm²/s. It is also discovered that polymeric photovoltaic semiconductors with greater molecular planarity, stronger stacking and higher crystallinity would possess greater thermal diffusivities. Correlations between thermal, charge transport properties will be discussed.

Keywords: polymer crystallinity, photovoltaic organic semiconductors, photothermal deflection technique, thermal diffusion

Procedia PDF Downloads 137
8471 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 96
8470 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation

Authors: Michael C. Barbecho, Romeo B. Morcilla

Abstract:

This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.

Keywords: electric vehicle, solar vehicles, front drive, solar, solar power

Procedia PDF Downloads 567
8469 Respiratory Indices and Sports Performance: A Comparision between Different Levels Basketballers

Authors: Ranjan Chakravarty, Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan

Abstract:

The purpose of this study is to compare the basketball players of different level on selected respiratory indices. Ninety male basketball players from different universities those who participated in intercollegiate and inter- varsity championship. Selected respiratory indices were resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate. Mean and standard deviation of selected respiratory indices were calculated and three different levels i.e. beginners, intermediate and advanced were compared by using analysis of variance. In order to test the hypothesis, level of significance was set at 0.05. It was concluded that variability does not exist among the basketball players of different groups with respect to their selected respiratory indices i.e. resting pulse rate, resting blood pressure, vital capacity and resting respiratory rate.

Keywords: respiratory indices, sports performance, basketball players, intervarsity level

Procedia PDF Downloads 334
8468 Recession Rate of Gangotri and Its Tributary Glacier, Garhwal Himalaya, India through Kinematic GPS Survey and Satellite Data

Authors: Harish Bisht, Bahadur Singh Kotlia, Kireet Kumar

Abstract:

In order to reconstruct past retreating rates, total area loss, volume change and shift in snout position were measured through multi-temporal satellite data from 1989 to 2016 and kinematic GPS survey from 2015 to 2016. The results obtained from satellite data indicate that in the last 27 years, Chaturangi glacier snout has retreated 1172.57 ± 38.3 m (average 45.07 ± 4.31 m/year) with a total area and volume loss of 0.626 ± 0.001 sq. Km and 0.139 Km³, respectively. The field measurements through differential global positioning system survey revealed that the annual retreating rate was 22.84 ± 0.05 m/year. The large variations in results derived from both the methods are probably because of higher difference in their accuracy. Snout monitoring of the Gangotri glacier during the ablation season (May to September) in the years 2005 and 2015 reveals that the retreating rate has been comparatively more declined than that shown by the earlier studies. The GPS dataset shows that the average recession rate is 10.26 ± 0.05 m/year. In order to determine the possible causes of decreased retreating rate, a relationship between debris thickness and melt rate was also established by using ablation stakes. The present study concludes that remote sensing method is suitable for large area and long term study, while kinematic GPS is more appropriate for the annual monitoring of retreating rate of glacier snout. The present study also emphasizes on mapping of all the tributary glaciers in order to assess the overall changes in the main glacier system and its health.

Keywords: Chaturangi glacier, Gangotri glacier, glacier snout, kinematic global positioning system, retreat rate

Procedia PDF Downloads 137
8467 Evaluating the Rate of Return to Peach and Nectarine Research in South Africa: 1971-2012

Authors: Chiedza Z. Tsvakirai, Precious M. Tshabalala, Frikkie Liebenberg, Johann F. Kirsten

Abstract:

Agricultural research conducted by the Agricultural Research Council has played an important role in increasing the productivity and profitability of the South African peach and nectarine industry. However, the importance of this research remains unclear to the industry stakeholders because a rate of return for this research has never been done. As a result, funding for the research at Agricultural Research Council has been waning because it is not clear how much value has been created and how much the industry stands to gain with continued research investment. Therefore, this study seeks to calculate the benefit of research investments in a bid to motivate for an increase in funding. The study utilized the supply response function to do this. The rate of return calculation revealed that agricultural research had a marginal internal rate of return of 55.9%. This means that every R1 invested yields a 56 c increase in value in the industry. Being this high, it can be concluded that investment in agricultural research is worthwhile. Thus justifies for an increase in research funding.

Keywords: Benefits of research investment, productivity.

Procedia PDF Downloads 506
8466 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle

Procedia PDF Downloads 142
8465 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)

Authors: Hamidreza Sharifan, Audra Morse

Abstract:

Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.

Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations

Procedia PDF Downloads 449
8464 Investigation of Resistive Switching in CsPbCl₃ / Cs₄PbCl₆ Core-Shell Nanocrystals Using Scanning Tunneling Spectroscopy: A Step Towards High Density Memory-based Applications

Authors: Arpan Bera, Rini Ganguly, Raja Chakraborty, Amlan J. Pal

Abstract:

To deal with the increasing demands for the high-density non-volatile memory devices, we need nano-sites with efficient and stable charge storage capabilities. We prepared nanocrystals (NCs) of inorganic perovskite, CsPbCl₃ coated with Cs₄PbCl₆, by colloidal synthesis. Due to the type-I band alignment at the junction, this core-shell composite is expected to behave as a charge trapping site. Using Scanning Tunneling Spectroscopy (STS), we investigated voltage-controlled resistive switching in this heterostructure by tracking the change in its current-voltage (I-V) characteristics. By applying voltage pulse of appropriate magnitude on the NCs through this non-invasive method, different resistive states of this system were systematically accessed. For suitable pulse-magnitude, the response jumped to a branch with enhanced current indicating a high-resistance state (HRS) to low-resistance state (LRS) switching in the core-shell NCs. We could reverse this process by using a pulse of opposite polarity. These two distinct resistive states can be considered as two logic states, 0 and 1, which are accessible by varying voltage magnitude and polarity. STS being a local probe in space enabled us to capture this switching at individual NC site. Hence, we claim a bright prospect of these core-shell NCs made of inorganic halide perovskites in future high density memory application.

Keywords: Core-shell perovskite, CsPbCl₃-Cs₄PbCl₆, resistive switching, Scanning Tunneling Spectroscopy

Procedia PDF Downloads 88
8463 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 342
8462 Corrosive Bacteria Attached to Carbon Steel Used in Oil and Gas Company

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Microbiologically influenced corrosion (MIC) is a major cause of pipeline failure in the oil and gas industry, particularly affecting carbon steel, which is widely used for its cost-effectiveness and mechanical properties. This study investigates the adhesion of sulfate-reducing bacteria (SRB) and other corrosive microbial species on API 5L X52 carbon steel in crude oil and injection water environments. Experimental results showed that after 72 hours of exposure, biofilm formed extensively, leading to significant corrosion rates. Weight loss measurements indicated a corrosion rate of 0.39 mm/year, with localized pitting observed at depths reaching 120 μm. Electrochemical impedance spectroscopy (EIS) revealed a drastic decrease in charge transfer resistance, from 1200 Ω/cm² for sterile samples to 240 Ω/cm² in the presence of SRB biofilm. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses confirmed the presence of iron sulfide deposits, indicating active bacterial colonization and biofilm-induced pitting corrosion. This study highlights the severe impact of MIC on pipeline infrastructure, emphasizing the need for efficient microbial control strategies. Furthermore, the results provide a framework for the development of enhanced protective coatings and environmentally friendly biocides to mitigate the economic and environmental risks associated with MIC in oilfield operations in Algeria.

Keywords: MIC, corrosion, bacteria, API 5L X52

Procedia PDF Downloads 19
8461 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 197
8460 The Evolution of the Simulated and Observed Star Formation Rates of Galaxies for the Past 13 Billion Years

Authors: Antonios Katsianis

Abstract:

I present the evolution of the galaxy Star Formation Rate Function (SFRF), star formation rate-stellar mass relation (SFR-M*) and Cosmic Star Formation Rate Density (CSFRD) of z = 0-8 galaxies employing both the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations and a compilation of UV, Ha, radio and IR data. While I present comparisons between the above, I evaluate the effect and importance of supernovae/active galactic nuclei feedback. The relation between the star formation rate and stellar mass of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, a tension between the above is reported in the literature. I present the evolution of the SFR-M* relation and demonstrate the inconsistencies between observations that are retrieved using different methods. I employ cosmological hydrodynamic simulations combined with radiative transfer methods and compare these with a range of observed data in order to investigate further the root of this tension. Last, I present insights about the scatter of the SFR-M* relation and investigate which mechanisms (e.g. feedback) drive its shape and evolution.

Keywords: cosmological simulations, galaxy formation and evolution, star formation rate, stellar masses

Procedia PDF Downloads 145
8459 The Hydrolysis of Phosphate Esters Can Be Enhanced by Intramolecular Hydrogen Bonding

Authors: Mohamed S. Sasi

Abstract:

The research project aim is to study the hydrolysis of 8-diethylphosphate-1-naphthalenol with hydroxylamine in water. 8-diethylphosphate-1-naphthalenol, 1 was successfully synthesized and its rate of reaction with hydroxylamine was studied at 60°C. Pseudo first order behavior was observed. The rate of P-O cleavage of 1 at 60°C (7.43 x 10-3 M-1s-1) was found to be 178 fold and 7 fold slower than diethyl 8-dimethylamino-1-naphthyl phosphate, 3 at 60°C (1.32 M-1s-1) and diethyl 8-amino-1-naphthyl phosphate, 2 at 90 °C (5.5 x 10-2 M-1s-1) respectively. The rate of P-O cleavage of 1 with hydroxylamine was found to be faster than that of 4-chlorophenyl-1-cyclopropylphosphate triester, 5 where the reaction was too slow to observe at 60°C.

Keywords: phosphate esters, intramolecular hydrogen bonding

Procedia PDF Downloads 423
8458 Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs.

Keywords: traffic engineering, potential preferences, cluster analysis, EV, parking-charging behavior

Procedia PDF Downloads 72
8457 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal

Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia

Abstract:

Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.

Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building

Procedia PDF Downloads 249