Search results for: decision tree classifiers
4440 Augmented Reality to Support the Design of Innovative Agroforestry Systems
Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger
Abstract:
Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR
Procedia PDF Downloads 1774439 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 5924438 Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity
Authors: Supriyono, Sumardiyono, Puti Pertiwi
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene.Keywords: antioxidant, , beta carotene, , crude palm oil, , DPPH, , tocopherol
Procedia PDF Downloads 2914437 Attachment and Decision-Making in Infertility
Authors: Anisa Luli, Alessandra Santona
Abstract:
Wanting a child and experiencing the impossibility to conceive is a painful condition that often is linked to infertility and often leads infertile individuals to experience psychological, relational and social problems. In this situation, infertile couples have to review their choices and take into consideration new ones. Few studies have focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the “problem” and the predictive role of the attachment, of the representations of the relationship with parents in childhood and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments comprises: General Decision Making Style (GDMS), Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), Parental Bonding Instrument (PBI) and Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females, experimental and control group. There have been founded significant statistical relationships between the attachment scales, the representations of the parenting style, the dyadic adjustment and the decision-making styles. These results contribute to enrich the literature on the subject of decision-making in infertile people and show the relationship between the attachment and decision-making styles, confirming the few results in literature.Keywords: attachment, decision-making style, infertility, dyadic adjustment
Procedia PDF Downloads 5814436 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging
Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui
Abstract:
Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture
Procedia PDF Downloads 3284435 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia
Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech
Abstract:
A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components
Procedia PDF Downloads 254434 Descriptive Analysis: New Media Influence on Decision Makers
Authors: Bashaiar Alsanaa
Abstract:
The process of decision making requires environment surveillance and public opinion monitoring, both of which can be attained through effective use of social media. This study aims to investigate the extent to which new media influence the decision making process by the Kuwaiti government. The research explores how unprecedented access to information as well as dynamic user-interaction made possible by new technologies play a significant role in all aspects of decision making whether on the end of the public or decision makers themselves. The research analyzes two case studies where public opinion was forceful on social media in order to explore how such media create interactive and liberal environments for individuals to participate in the process of taking action with regards to political, economic and social issues. The findings of this descriptive study indicate the overwhelming extent to which social media are being used in Kuwait to create new social reform by the government based on citizen interaction with current topics.Keywords: communication, descriptive, new media technologies, social media.
Procedia PDF Downloads 1184433 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information
Abstract:
Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method
Procedia PDF Downloads 1674432 The 'Cornaro Family Tree' as a Tool for Identifying Cornaro Family Portraits
Authors: Rachel Healy
Abstract:
This paper builds on the speaker’s recent identification of an early sixteenth-century painting in the National Gallery of Ireland as containing rare portraits of Giorgio Cornaro (brother of Caterina, Queen of Cyprus) and his son Cardinal Francesco. It resolves similar long-standing confusion regarding the identities of sitters in related works by Titian, Raphael and Bernini, in works such as the Cornaro Triple Portrait in the National Gallery of Art, Washington DC, Man with a Falcon in The Joslyn Art Museum, Omaha, Head of a Cardinal, Wilton House, Wiltshire and The Cornaro Chapel, Santa Maria della Vittoria, Rome, by using an overlooked seventeenth-century painted Cornaro family tree, from Palazzo Corner-Mocenigo, as a tool for identifying these and other sitters in disputed portraits of one of Renaissance Venice’s wealthiest and most influential patrician families. In so doing, it will cast new light on Titian’s development as a portraitist and the extent to which important paintings commissioned by the Cornaro survived fires at two family palaces in Venice in the 1530s. It will also showcase the associations Raphael had with the Cornaro cardinal and will present new evidence relating to the likenesses Bernini fashioned for the Cornaro Chapel in 1647-52.Keywords: Venice, portraits, titian, genealogy, Bernini, family tree, Raphael, venetian family, cornaro, sixteenth century Venice, portraiture
Procedia PDF Downloads 2714431 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 384430 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry
Authors: Ph. Fauquet-Alekhine
Abstract:
Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.Keywords: bias, expert, high risk industry, stress.
Procedia PDF Downloads 1124429 Decision Making for Industrial Engineers: From Phenomenon to Value
Authors: Ali Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. In out current environment, the path from a phenomenon to value involves numerous people with expertise in various areas including domain knowledge of a field and the ability to make decisions within an operating environment that lead to value creation. We propose some skills that industrial engineering programs should focus on, and argue that an industrial engineer is a decision maker instead of a problem solver.Keywords: decision analysis, problem-solving, value creation, industrial engineering
Procedia PDF Downloads 3734428 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations
Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos
Abstract:
Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest
Procedia PDF Downloads 1774427 A Behaviourally Plausible Decision Centred Perspective on the Role of Corporate Governance in Corporate Failures
Authors: Navdeep Kaur
Abstract:
The primary focus of this study is to answer “What is the role of corporate governance in corporate failures? Does poor corporate governance lead to corporate failures? If so, how?”. In doing so, the study examines the literature from multiple fields, including corporate governance, corporate failures and organizational decision making, and presents a research gap to analyze and explore the relationship between corporate governance practices and corporate failures through a behavioral lens. In approaching this, a qualitative research methodology is adopted to analyze the failure of Enron Corporation (United States). The research considered the case study organizations as the primary unit of analysis and the decision-makers as the secondary unit of analysis. Based on this research approach, the study reports the analytical results drawn from extensive and triangulated secondary data. The study then interprets the results in the context of the theoretical synthesis. The study contributes towards filling a gap in the research and presents a behaviourally plausible decision centered model of the role of corporate governance in corporate failures. The model highlights the critical role of the behavioral aspects of corporate governance decision making in corporate failures and focuses attention on the under-explored aspects of corporate governance decision making. The study also suggests a further understanding of ‘A Behavioral Theory of the Firm’ in relation to corporate failures.Keywords: behavior, corporate failure, corporate governance, decision making, values
Procedia PDF Downloads 1324426 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 214425 Investigation of Changes of Physical Properties of the Poplar Wood in Radial and Longitudinal Axis at Chaaloos Zone
Authors: Afshin Veisi
Abstract:
In this study, the physical properties of wood in poplar wood (Populous sp.) were analyzed in longitudinal and radial directions of the stem. Three Populous Alba tree were cut in chaloos zone and from each tree, 3 discs were selected at 130cm, half of tree and under of crown. The test samples from pith to bark (heartwood to sapwood) were prepared from these discs for measuring the involved properties such as, wet, dry and critical specific gravity, porosity, volume shrinkage and swelling based on the ASTM standard, and data in two radial and longitudinal directions in the trank were statistically analyzed. Such as, variations of wet, dry and critical specific gravity had in radial direction respectively: irregular increase, increase and increase, and in longitudinal direction respectively: irregular decrease, irregular increase and increase. Results of variations to moisture content and porosity show that in radial direction respectively: irregular increasing and decreasing, and in longitudinal direction from down to up respectively: irregular decreasing and stability. Volume shrinkage and swelling variations show in radial direction irregular and in longitudinal axial regular decreasing.Keywords: poplar wood, physical properties, shrinkage, swelling, critical specific gravity, wet specific gravity, dry specific gravity
Procedia PDF Downloads 2784424 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model
Authors: Babak Daneshvar Rouyendegh
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)
Procedia PDF Downloads 6784423 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making
Authors: Mikel Alonso López
Abstract:
In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.Keywords: consumer behaviour, emotions, decision making, consumer psychology
Procedia PDF Downloads 4524422 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox
Authors: Jessica M. Black
Abstract:
Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary workKeywords: methodology, natural science, social science, transdisciplinary
Procedia PDF Downloads 1154421 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 574420 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 4554419 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method
Authors: Muhammad Shoaib, Hassan M Al-Swaidan
Abstract:
Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry
Procedia PDF Downloads 2794418 Reading Knowledge Development and Its Phases with Generation Z
Authors: Onur Özdemir, M.Erhan ORHAN
Abstract:
Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.Keywords: knowledge development, knowledge management, generation Z, intelligence cycle
Procedia PDF Downloads 5174417 Free Will and Compatibilism in Decision Theory: A Solution to Newcomb’s Paradox
Authors: Sally Heyeon Hwang
Abstract:
Within decision theory, there are normative principles that dictate how one should act in addition to empirical theories of actual behavior. As a normative guide to one’s actual behavior, evidential or causal decision-theoretic equations allow one to identify outcomes with maximal utility values. The choice that each person makes, however, will, of course, differ according to varying assignments of weight and probability values. Regarding these different choices, it remains a subject of considerable philosophical controversy whether individual subjects have the capacity to exercise free will with respect to the assignment of probabilities, or whether instead the assignment is in some way constrained. A version of this question is given a precise form in Richard Jeffrey’s assumption that free will is necessary for Newcomb’s paradox to count as a decision problem. This paper will argue, against Jeffrey, that decision theory does not require the assumption of libertarian freedom. One of the hallmarks of decision-making is its application across a wide variety of contexts; the implications of a background assumption of free will is similarly varied. One constant across the contexts of decision is that there are always at least two levels of choice for a given agent, depending on the degree of prior constraint. Within the context of Newcomb’s problem, when the predictor is attempting to guess the choice the agent will make, he or she is analyzing the determined aspects of the agent such as past characteristics, experiences, and knowledge. On the other hand, as David Lewis’ backtracking argument concerning the relationship between past and present events brings to light, there are similarly varied ways in which the past can actually be dependent on the present. One implication of this argument is that even in deterministic settings, an agent can have more free will than it may seem. This paper will thus argue against the view that a stable background assumption of free will or determinism in decision theory is necessary, arguing instead for a compatibilist decision theory yielding a novel treatment of Newcomb’s problem.Keywords: decision theory, compatibilism, free will, Newcomb’s problem
Procedia PDF Downloads 3214416 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 1244415 Effectiveness of ISSR Technique in Revealing Genetic Diversity of Phaseolus vulgaris L. Representing Various Parts of the World
Authors: Mohamed El-Shikh
Abstract:
Phaseolus vulgaris L. is the world’s second most important bean after soybeans; used for human food and animal feed. It has generally been linked to reduced risk of cardiovascular disease, diabetes mellitus, obesity, cancer and diseases of digestive tract. The effectiveness of ISSR in achievement of the genetic diversity among 60 common bean accessions; represent various germplasms around the world was investigated. In general, the studied Phaseolus vulgaris accessions were divided into 2 major groups. All of the South-American accessions were separated into the second major group. These accessions may have different genetic features that are distinct from the rest of the accessions clustered in the major group. Asia and Europe accessions (1-20) seem to be more genetically similar (99%) to each other as they clustered in the same sub-group. The American and African varieties showed similarities as well and clustered in the same sub-tree group. In contrast, Asian and American accessions No. 22 and 23 showed a high level of genetic similarities, although these were isolated from different regions. The phylogenetic tree showed that all the Asian accessions (along with Australian No. 59 and 60) were similar except Indian and Yemen accessions No. 9 and 20. Only Netherlands accession No. 3 was different from the rest of European accessions. Morocco accession No. 52 was genetically different from the rest of the African accessions. Canadian accession No. 44 seems to be different from the other North American accessions including Guatemala, Mexico and USA.Keywords: phylogenetic tree, Phaseolus vulgaris, ISSR technique, genetics
Procedia PDF Downloads 4084414 Normalized Laplacian Eigenvalues of Graphs
Authors: Shaowei Sun
Abstract:
Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph.Keywords: graph, normalized Laplacian eigenvalues, normalized Laplacian matrix, tree
Procedia PDF Downloads 3284413 The Effect of Career Decision Self Efficacy on Coping with Career Indecision among Young Adults
Authors: Yuliya Lipshits-Braziler
Abstract:
For many young adults, career decision making is a difficult and complex process that may lead to indecision. Indecision is frequently associated with great psychological distress and low levels of well-being. One important resource for dealing with indecision is career decision self-efficacy (CDSE), which refers to people’s beliefs about their ability to successfully accomplish certain tasks involved in career choice. Drawing from Social Cognitive Theory, it has been hypothesized that CDSE correlates with (a) people’s likelihood to engage in or avoid career decision making tasks, (b) the amount of effort put into the decision making process, (c) the people’s persistence in decision making efforts when faced with difficulties, and (d) the eventual success in arriving at career decisions. Based on these assumptions, the present study examines the associations between the CDSE and 14 strategies for coping with career indecision among young adults. Using the structural equation modeling (SEM), the results showed that CDSE is positively associated with the use of productive coping strategies, such as information-seeking, problem-solving, positive thinking, and self-regulation. In addition, CDSE was negatively associated with nonproductive coping strategies, such as avoidance, isolation, ruminative thinking, and blaming others. Contrary to our expectations, CDSE was not significantly correlated with instrumental help-seeking, while it was negatively correlated with emotional help-seeking. The results of this study can be used to facilitate the development of interventions aiming to reinforce young adults’ career decision making self-efficacy, which may provide them with a basis for overcoming career indecision more effectively.Keywords: career decision self-efficacy, career indecision, coping strategies, career counseling
Procedia PDF Downloads 2564412 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1034411 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database
Procedia PDF Downloads 233