Search results for: decision support framework
13693 Published Financial Statement as a Correlate of Investment Decision among Commercial Bank Stakeholders in Nigeria
Authors: C. F. Popoola, K. Akinsanya, S. B. Babarinde, D. A. Farinde
Abstract:
This study investigated published financial statement as correlate of investment decision among commercial bank stakeholders in Nigeria. A correlation research design was used in the study. 180 users of published financial statement were purposively sampled from Lagos and Ibadan. Data generated were analyzed using Pearson correlation and regression. The findings of the study revealed that, balance sheet is negatively related with investment decision (r=-.483; p < .01) while income statement (r= .249; p < .001), notes on the account (r= .230; p < .001), cash flow statement (r= .202; p < .001), value added statement (r= .328; p < .001) and five-year financial summary (r= .191 ;p < .01) are positively related with investment decision. Findings also revealed that components of published financial statement significantly predicted good investment decision (R2= .983; F(5,175)=284.5; p < .05) for commercial bank stakeholders. Therefore, it was suggested that Nigeria banks and professional bodies should instigate programs that will increase the knowledge of stakeholders on published financial statement.Keywords: commercial banks, financial statement, income statement, investment decision, stakeholders
Procedia PDF Downloads 45913692 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 63213691 The Influence of Teacher Support on School Belonging in Chinese Students: A Moderated Mediation Model
Authors: Yuting Tan, Benchao Fan, Xiaoman Wei, Tao Yang
Abstract:
In order to investigate the relationship between students’ perceived teacher support, parental emotional support, mastery goal orientation and school belonging, the questionnaire data of 11,898 15-year-olds (5,699 girls and 6,199 boys) in four Chinese provinces and cities (Beijing, Shanghai, Jiangsu and Zhejiang) that participated in PISA 2018 were used. The results showed that: (1) teacher support can positively and significantly predict students' school belonging; (2) mastery goal orientation played the mediating role in the relationship between teacher support and school belonging; (3) the second half path of students’ mastery goal orientation to the mediation process of teacher support and school belonging was regulated by parental emotional support. The results have important educational practice enlightenment for effectively promoting the school belonging of Chinese students.Keywords: school belonging, teacher support, mastery goal orientation, parental emotional support
Procedia PDF Downloads 8613690 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry
Authors: Zeynep Sener, Mehtap Dursun
Abstract:
Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection
Procedia PDF Downloads 45113689 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 15213688 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School
Authors: Andrew Kipp
Abstract:
Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making
Procedia PDF Downloads 14413687 The Role of Knowledge Management in Global Software Engineering
Authors: Samina Khalid, Tehmina Khalil, Smeea Arshad
Abstract:
Knowledge management is essential ingredient of successful coordination in globally distributed software engineering. Various frameworks, KMSs, and tools have been proposed to foster coordination and communication between virtual teams but practical implementation of these solutions has not been found. Organizations have to face challenges to implement knowledge management system. For this purpose at first, a literature review is arranged to investigate about challenges that restrict organizations to implement KMS and then by taking in account these challenges a problem of need of integrated solution in the form of standardized KMS that can easily store tacit and explicit knowledge, has traced down to facilitate coordination and collaboration among virtual teams. Literature review has been already shown that knowledge is a complex perception with profound meanings, and one of the most important resources that contributes to the competitive advantage of an organization. In order to meet the different challenges caused by not properly managing knowledge related to projects among virtual teams in GSE, we suggest making use of the cloud computing model. In this research a distributed architecture to support KM storage is proposed called conceptual framework of KM as a service in cloud. Framework presented is enhanced and conceptual framework of KM is embedded into that framework to store projects related knowledge for future use.Keywords: management, Globsl software development, global software engineering
Procedia PDF Downloads 52713686 Understanding the Factors That Enable Logistics Integration in the Port Sector: Evidence from Iranian Seaport Sector
Authors: Ali Alavi, Owen Nguyen, Jiangang Fei, Jafar Sayareh
Abstract:
The main purpose of this research is to propose a conceptual framework to analyze port logistics integration in general and for the Iranian port sector in particular, including consideration of the challenges, outcomes, and opportunities in implementing port logistics integration. First, a literature review of studies on logistics integration in seaports and terminals is conducted. Second, a new conceptual framework for port logistics integration is proposed to incorporate the role of the new variables emerging from the recent developments in the global business environment. The literature review has found the logistics process and operations, information integration, value-added services, and logistics practices, organizational activities, resource sharing and institutional support being influential to logistics integration. The study used survey method to test the proposed conceptual framework. Both online and self-administrative survey have been used to collect data from port official staffs in Iranian seaports and their associations (internal port stakeholders) as well as other experts in various actors. In the study, the questionnaire was first validated using exploratory factor analysis (EFA) and then by confirmatory factor analysis (CFA). The results of the EFA and CFA confirmed the finding from the literature review. Research results and conceptual framework shed the lights on port logistics integration concept and suggest guidelines and procedures improve port logistics integration.Keywords: maritime logistics, logistics integration, port management, EFA, CFA
Procedia PDF Downloads 16413685 Association of Social Data as a Tool to Support Government Decision Making
Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias
Abstract:
Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.Keywords: social data, government decision making, association of social data, data mining
Procedia PDF Downloads 36913684 Team Cognitive Heterogeneity and Strategic Decision-Making Flexibility: The Role of Transactive Memory System and Task Complexity
Authors: Rui Xing, Baolin Ye, Nan Zhou, Guohong Wang
Abstract:
Drawing upon a perspective of cognitive interaction, this study explores the relationship between team cognitive heterogeneity and team strategic decision-making flexibility, treating the transactive memory system as a mediator and task complexity as a moderator. The hypotheses were tested in linear regression models by using data gathered from 67 strategic decision-making teams in the new-energy vehicle industry. It is found that team cognitive heterogeneity has a positive impact on strategic decision-making flexibility through the mediation of specialization and coordination of the transactive memory system, which is positively moderated by task complexity.Keywords: strategic decision-making flexibility, team cognitive heterogeneity, transactive memory system, task complexity
Procedia PDF Downloads 8013683 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application
Procedia PDF Downloads 12913682 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 39913681 Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection
Authors: Viviana Ventre, Giacomo Di Tollo, Roberta Martino
Abstract:
The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios.Keywords: analytical hierarchical process, consensus building, false consensus effect, markov chains, portfolio selection problem
Procedia PDF Downloads 9313680 Decision Analysis Module for Excel
Authors: Radomir Perzina, Jaroslav Ramik
Abstract:
The Analytic Hierarchy Process is frequently used approach for solving decision making problems. There exists wide range of software programs utilizing that approach. Their main disadvantage is that they are relatively expensive and missing intermediate calculations. This work introduces a Microsoft Excel add-in called DAME – Decision Analysis Module for Excel. Comparing to other computer programs DAME is free, can work with scenarios or multiple decision makers and displays intermediate calculations. Users can structure their decision models into three levels – scenarios/users, criteria and variants. Items on all levels can be evaluated either by weights or pair-wise comparisons. There are provided three different methods for the evaluation of the weights of criteria, the variants as well as the scenarios – Saaty’s Method, Geometric Mean Method and Fuller’s Triangle Method. Multiplicative and additive syntheses are supported. The proposed software package is demonstrated on couple of illustrating examples of real life decision problems.Keywords: analytic hierarchy process, multi-criteria decision making, pair-wise comparisons, Microsoft Excel, scenarios
Procedia PDF Downloads 45213679 Selecting the Best Software Product Using Analytic Hierarchy Process and Fuzzy-Analytic Hierarchy Process Modules
Authors: Anas Hourani, Batool Ahmad
Abstract:
Software applications play an important role inside any institute. They are employed to manage all processes and store entities-related data in the computer. Therefore, choosing the right software product that meets institute requirements is not an easy decision in view of considering multiple criteria, different points of views, and many standards. As a case study, Mutah University, located in Jordan, is in essential need of customized software, and several companies presented their software products which are very similar in quality. In this regard, an analytic hierarchy process (AHP) and a fuzzy analytic hierarchy process (Fuzzy-AHP) models are proposed in this research to identify the most suitable and best-fit software product that meets the institute requirements. The results indicate that both modules are able to help the decision-makers to make a decision, especially in complex decision problems.Keywords: analytic hierarchy process, decision modeling, fuzzy analytic hierarchy process, software product
Procedia PDF Downloads 39213678 Developing a Framework for Online Auction Effectiveness
Authors: Chechen Liao, Pui-Lai To, Chiao-Ying Chen
Abstract:
An introduction of internet auction has significantly widened the pool of consumers who participate in auctions and increased the number of companies attempting to sell their products in an auction format. Previous research on auctions has focused almost exclusively on the behavior of professional bidders. In this study, we focus on the characteristic of seller, auction parameter and the effect of supply and demand, and examine these impacts on auction effectiveness. In particular, a framework for online auction effectiveness was developed. The framework will help researchers and practitioner to find ways to improve online auction effectiveness.Keywords: Auction Effectiveness, Framework Developing, Online Auction, Selling Strategy
Procedia PDF Downloads 33813677 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 12913676 Management Information System to Help Managers for Providing Decision Making in an Organization
Authors: Ajayi Oluwasola Felix
Abstract:
Management information system (MIS) provides information for the managerial activities in an organization. The main purpose of this research is, MIS provides accurate and timely information necessary to facilitate the decision-making process and enable the organizations planning control and operational functions to be carried out effectively. Management information system (MIS) is basically concerned with processing data into information and is then communicated to the various departments in an organization for appropriate decision-making. MIS is a subset of the overall planning and control activities covering the application of humans technologies, and procedures of the organization. The information system is the mechanism to ensure that information is available to the managers in the form they want it and when they need it.Keywords: Management Information Systems (MIS), information technology, decision-making, MIS in Organizations
Procedia PDF Downloads 55713675 Climate Change: A Critical Analysis on the Relationship between Science and Policy
Authors: Paraskevi Liosatou
Abstract:
Climate change is considered to be of global concern being amplified by the fact that by its nature, cannot be spatially limited. This fact makes necessary the intergovernmental decision-making procedures. In the intergovernmental level, the institutions such as the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change develop efforts, methods, and practices in order to plan and suggest climate mitigation and adaptation measures. These measures are based on specific scientific findings and methods making clear the strong connection between science and policy. In particular, these scientific recommendations offer a series of practices, methods, and choices mitigating the problem by aiming at the indirect mitigation of the causes and the factors amplifying climate change. Moreover, modern production and economic context do not take into consideration the social, political, environmental and spatial dimensions of the problem. This work studies the decision-making process working in international and European level. In this context, this work considers the policy tools that have been implemented by various intergovernmental organizations. The methodology followed is based mainly on the critical study of standards and process concerning the connections and cooperation between science and policy as well as considering the skeptic debates developed. The finding of this work focuses on the links between science and policy developed by the institutional and scientific mechanisms concerning climate change mitigation. It also analyses the dimensions and the factors of the science-policy framework; in this way, it points out the causes that maintain skepticism in current scientific circles.Keywords: climate change, climate change mitigation, climate change skepticism, IPCC, skepticism
Procedia PDF Downloads 13613674 Audio-Visual Recognition Based on Effective Model and Distillation
Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin
Abstract:
Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.Keywords: lipreading, audio-visual, Efficientnet, distillation
Procedia PDF Downloads 13413673 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework
Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad
Abstract:
This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards Smart National Identity Card health information application. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the previous studies revealed that the factors of trust, perceived risk, privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory existing in the information system literature up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. The empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.Keywords: unified theory of acceptance and use of technology (UTAUT) model, UTAUT2 model, smart national identity card (SNIC), health information application, privacy calculus model (PCM)
Procedia PDF Downloads 47013672 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI
Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso
Abstract:
The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI
Procedia PDF Downloads 10013671 Perceived Social Support, Resilience and Relapse Risk in Recovered Addicts
Authors: Islah Ud Din, Amna Bibi
Abstract:
The current study was carried out to examine the perceived social support, resilience and relapse risk in recovered addicts. A purposive sampling technique was used to collect data from recovered addicts. A multidimensional scale of perceived social support by was used to measure the perceived social support. The brief Resilience Scale (BRS) was used to assess resilience. The Stimulant Relapse Risk Scale (SRRS) was used to examine the relapse risk. Resilience and Perceived social support have substantial positive correlations, whereas relapse risk and perceived social support have significant negative associations. Relapse risk and resilience have a strong inverse connection. Regression analysis was used to check the mediating effect of resilience between perceived social support and relapse risk. The findings revealed that perceived social support negatively predicted relapse risk. Results showed that Resilience plays a role as partial mediation between perceived social support and relapse risk. This Research will allow us to explore and understand the relapse risk factor and the role of perceived social support and resilience in recovered addicts. The study's findings have immediate consequences in the prevention of relapse. The study will play a significant part in drug rehabilitation centers, clinical settings and further research.Keywords: perceived social support, resilience, relapse risk, recovered addicts, drugs addiction
Procedia PDF Downloads 3613670 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 17413669 Assessing Firm Readiness to Implement Cloud Computing: Toward a Comprehensive Model
Authors: Seyed Mohammadbagher Jafari, Elahe Mahdizadeh, Masomeh Ghahremani
Abstract:
Nowadays almost all organizations depend on information systems to run their businesses. Investment on information systems and their maintenance to keep them always in best situation to support firm business is one of the main issues for every organization. The new concept of cloud computing was developed as a technical and economic model to address this issue. In cloud computing the computing resources, including networks, applications, hardwares and services are configured as needed and are available at the moment of request. However, migration to cloud is not an easy task and there are many issues that should be taken into account. This study tries to provide a comprehensive model to assess a firm readiness to implement cloud computing. By conducting a systematic literature review, four dimensions of readiness were extracted which include technological, human, organizational and environmental dimensions. Every dimension has various criteria that have been discussed in details. This model provides a framework for cloud computing readiness assessment. Organizations that intend to migrate to cloud can use this model as a tool to assess their firm readiness before making any decision on cloud implementation.Keywords: cloud computing, human readiness, organizational readiness, readiness assessment model
Procedia PDF Downloads 39613668 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic
Authors: Cheng Zeng, Xia Luo
Abstract:
Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization
Procedia PDF Downloads 17613667 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray
Abstract:
Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer
Procedia PDF Downloads 7513666 eTransformation Framework for the Cognitive Systems
Authors: Ana Hol
Abstract:
Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.Keywords: system implementations, AI supported systems, cognitive systems, eTransformation
Procedia PDF Downloads 23813665 Sustainability of High-Rise Affordable Housing: Critical Issues in Applying Green Building Rating Tools
Authors: Poh Im. Lim, Hillary Yee Qin. Tan
Abstract:
Nowadays, going green has become a trend, and being emphasized in the construction industry. In Malaysia, there are several green rating tools available in the industry and among these, GBI and GreenRE are considered as the most common tools adopted for residential buildings. However, being green is not equal to or making something sustainable. Being sustainable is to take economic, environmental and social aspects into consideration. This is particularly essential in the affordable housing sector as the end-users belong to lower-income and places importance on many socio-economic needs beyond the environmental criteria. This paper discusses the arguments in proposing a sustainability framework that is tailor-made for high-rise affordable housing. In-depth interviews and observation mapping methods were used in gathering inputs from the end-users, non-governmental organisations (NGOs) as well as the professionals. ‘Bottom-up’ approach was applied in this research to show the significance of participation from the local community in the decision-making process. The proposed sustainability framework illustrates the discrepancies between user priorities and what the industry is providing. The outcome of this research suggests that integrating sustainability into high-rise affordable housing is achievable and beneficial to the industry, society, and the environment.Keywords: green building rating tools, high-rise affordable housing, sustainability framework, sustainable development
Procedia PDF Downloads 14013664 Using the Clinical Decision Support Platform, Dem DX, to Assess the ‘Urgent Community Care Team’s Notes Regarding Clinical Assessment, Management, and Healthcare Outcomes
Abstract:
Background: Heywood, Middleton & Rochdale Urgent Community Care Team (UCCT)1 is a great example of using a multidisciplinary team to cope with demand. The service reduces unnecessary admissions to hospitals and ensures that patients can leave the hospital quicker by making care more readily available within the community and patient’s homes. The team comprises nurses, community practitioners, and allied health professions, including physiotherapy, occupational therapy, pharmacy, and GPs. The main challenge for a team with a range of experiences and skill sets is to maintain consistency of care, which technology can help address. Allied healthcare professionals (HCPs) are often used in expanded roles with duties mainly involving patient consultations and decision making to ease pressure on doctors. The Clinical Reasoning Platform (CRP) Dem Dx is used to support new as well as experienced professionals in the decision making process. By guiding HCPs through diagnosing patients from an expansive directory of differential diagnoses, patients can receive quality care in the community. Actions on the platform are determined using NICE guidelines along with local guidance influencing the assessment and management of a patient. Objective: To compare the clinical assessment, decisions, and actions taken by the UCCT multidisciplinary team in the community and Dem Dx, using retrospective clinical cases. Methodology: Dem Dx was used to analyse 192 anonymised cases provided by the HMR UCCT. The team’s performance was compared with Dem Dx regarding the quality of the documentation of the clinical assessment and the next steps on the patient’s journey, including the initial management, actions, and any onward referrals made. The cases were audited by two medical doctors. Results: The study found that the actions outlined by the Dem Dx platform were appropriate in almost 87% of cases. When in a direct comparison between DemDX and the actions taken by the clinical team, it was found that the platform was suitable 83% (p<0.001) of the time and could lead to a potential improvement of 66% in the assessment and management of cases. Dem Dx also served to highlight the importance of comprehensive and high quality clinical documentation. The quality of documentation of cases by UCCT can be improved to provide a detailed account of the assessment and management process. By providing step-by-step guidance and documentation at every stage, Dem Dx may ensure that legal accountability has been fulfilled. Conclusion: With the ever expanding workforce in the NHS, technology has become a key component in driving healthcare outcomes. To improve healthcare provision and clinical reasoning, a decision support platform can be integrated into HCPs’ clinical practice. Potential assistance with clinical assessments, the most appropriate next step and actions in a patient’s care, and improvements in the documentation was highlighted by this retrospective study. A further study has been planned to ascertain the effectiveness of improving outcomes using the clinical reasoning platform within the clinical setting by clinicians.Keywords: allied health professional, assessment, clinical reasoning, clinical records, clinical decision-making, ocumentation
Procedia PDF Downloads 164