Search results for: admittance controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 765

Search results for: admittance controller

375 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 122
374 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 287
373 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 209
372 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems

Authors: Elaid Bouchetob, Bouchra Nadji

Abstract:

This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.

Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter

Procedia PDF Downloads 63
371 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation

Authors: Natalia Kalinowska

Abstract:

The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.

Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach

Procedia PDF Downloads 252
370 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 73
369 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 403
368 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 507
367 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 369
366 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 258
365 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing

Authors: Jason R. King, Hugh H. T. Liu

Abstract:

This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.

Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing

Procedia PDF Downloads 342
364 Motion Capture Based Wizard of Oz Technique for Humanoid Robot

Authors: Rafal Stegierski, Krzysztof Dmitruk

Abstract:

The paper focuses on robotic tele-presence system build around humanoid robot operated with controller-less Wizard of Oz technique. Proposed solution gives possibility to quick start acting as a operator with short, if any, initial training.

Keywords: robotics, motion capture, Wizard of Oz, humanoid robots, human robot interaction

Procedia PDF Downloads 481
363 Microgrid: An Alternative of Electricity Supply to an Island in Thailand

Authors: Pawitchaya Srijaiwong, Surin Khomfoi

Abstract:

There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.

Keywords: energy storage, islanding, microgrid, renewable energy

Procedia PDF Downloads 328
362 Modelling Optimal Control of Diabetes in the Workplace

Authors: Eunice Christabel Chukwu

Abstract:

Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.

Keywords: mathematical model, blood, insulin, pancreas, model, glucose

Procedia PDF Downloads 61
361 Design and Implementation of Control System in Underwater Glider of Ganeshblue

Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono

Abstract:

Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.

Keywords: control system, PID, underwater glider, marine robotics

Procedia PDF Downloads 374
360 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern

Authors: Shutchapol Chopvitayakun

Abstract:

Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.

Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)

Procedia PDF Downloads 315
359 Simulation, Optimization, and Analysis Approach of Microgrid Systems

Authors: Saqib Ali

Abstract:

Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.

Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management

Procedia PDF Downloads 97
358 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 87
357 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis

Abstract:

This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.

Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control

Procedia PDF Downloads 169
356 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 196
355 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 144
354 Automation of Pneumatic Seed Planter for System of Rice Intensification

Authors: Tukur Daiyabu Abdulkadir, Wan Ishak Wan Ismail, Muhammad Saufi Mohd Kassim

Abstract:

Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range.

Keywords: automation, calibration, pneumatic seed planter, system of rice intensification

Procedia PDF Downloads 644
353 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC

Procedia PDF Downloads 384
352 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 480
351 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure

Authors: Rajesh Agarwal

Abstract:

Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.

Keywords: capacitance, mobility, organic, thin film transistor

Procedia PDF Downloads 165
350 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing

Authors: Vishnu A., Ashesh Saha

Abstract:

The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.

Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve

Procedia PDF Downloads 79
349 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead

Authors: Behrooz Daneshmand

Abstract:

Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.

Keywords: software-defined networking, security, SDN, 5G/IMT-2020

Procedia PDF Downloads 101
348 Development of Electric Generator and Water Purifier Cart

Authors: Luisito L. Lacatan, Gian Carlo J. Bergonia, Felipe C. Buado III, Gerald L. Gono, Ron Mark V. Ortil, Calvin A. Yap

Abstract:

This paper features the development of a Mobile Self-sustaining Electricity Generator for water distillation process with MCU- based wireless controller & indicator designed to solve the problem of scarcity of clean water. It is a fact that pure water is precious nowadays and its value is more precious to those who do not have or enjoy it. There are many water filtration products in existence today. However, none of these products fully satisfies the needs of families needing clean drinking water. All of the following products require either large sums of money or extensive maintenance, and some products do not even come with a guarantee of potable water. The proposed project was designed to alleviate the problem of scarcity of potable water in the country and part of the purpose was also to identify the problem or loopholes of the project such as the distance and speed required to produce electricity using a wheel and alternator, the required time for the heating element to heat up, the capacity of the battery to maintain the heat of the heating element and the time required for the boiler to produce a clean and potable water. The project has three parts. The first part included the researchers’ effort to plan every part of the project from the conversion of mechanical energy to electrical energy, from purifying water to potable drinking water to the controller and indicator of the project using microcontroller unit (MCU). This included identifying the problem encountered and any possible solution to prevent and avoid errors. Gathering and reviewing related studies about the project helped the researcher reduce and prevent any problems before they could be encountered. It also included the price and quantity of materials used to control the budget.

Keywords: mobile, self – sustaining, electricity generator, water distillation, wireless battery indicator, wireless water level indicator

Procedia PDF Downloads 311
347 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 478
346 The Efficacy of Pre-Hospital Packed Red Blood Cells in the Treatment of Severe Trauma: A Retrospective, Matched, Cohort Study

Authors: Ryan Adams

Abstract:

Introduction: Major trauma is the leading cause of death in 15-45 year olds and a significant human, social and economic costs. Resuscitation is a stalwart of trauma management, especially in the pre-hospital environment and packed red blood cells (pRBC) are being increasingly used with the advent of permissive hypotension. The evidence in this area is lacking and further research is required to determine its efficacy. Aim: The aim of this retrospective, matched cohort study was to determine if major trauma patients, who received pre-hospital pRBC, have a difference in their initial emergency department cardiovascular status; when compared with injury-profile matched controls. Methods: The trauma databases of the Royal Brisbane and Women's Hospital, Royal Children's Hospital (Herston) and Queensland Ambulance Service were accessed and major trauma patient (ISS>12) data, who received pre-hospital pRBC, from January 2011 to August 2014 was collected. Patients were then matched against control patients that had not received pRBC, by their injury profile. The primary outcomes was cardiovascular status; defined as shock index and Revised Trauma Score. Results: Data for 25 patients who received pre-hospital pRBC was accessed and the injury profiles matched against suitable controls. On admittance to the emergency department, a statistically significant difference was seen in the blood group (Blood = 1.42 and Control = 0.97, p-value = 0.0449). However, the same was not seen with the RTS (Blood = 4.15 and Control 5.56, p-value = 0.291). Discussion: A worsening shock index and revised trauma score was associated with pre-hospital administration of pRBC. However, due to the small sample size, limited matching protocol and associated confounding factors it is difficult to draw any solid conclusions. Further studies, with larger patient numbers, are required to enable adequate conclusions to be drawn on the efficacy of pre-hospital packed red blood cell transfusion.

Keywords: pre-hospital, packed red blood cells, severe trauma, emergency medicine

Procedia PDF Downloads 394