Search results for: PAHs (polycyclic aromatic hydrocarbons)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 576

Search results for: PAHs (polycyclic aromatic hydrocarbons)

186 Characterization of the Pore System and Gas Storage Potential in Unconventional Reservoirs: A Case of Study of the Cretaceous la Luna Formation, Middle Magdalena Valley Basin, Colombia

Authors: Carlos Alberto Ríos-Reyes, Efraín Casadiego-Quintero

Abstract:

We propose a generalized workflow for mineralogy investigation of unconventional reservoirs using multi-scale imaging and pore-scale analyses. This workflow can be used for the integral evaluation of these resources. The Cretaceous La Luna Formation´s mudstones in the Middle Magdalena Valley Basin (Colombia) inherently show a heterogeneous pore system with organic and inorganic pores. For this reason, it is necessary to carry out the integration of high resolution 2D images of mapping by conventional petrography, scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy to describe their organic and inorganic porosity to understand the transport mechanism through pores. The analyzed rocks show several pore types, including interparticle pores, organoporosity, intraparticle pores, intraparticle pores, and microchannels and/or microfractures. The existence of interconnected pores in pore system of these rocks promotes effective pathways for primary gas migration and storage space for residual hydrocarbons in mudstones, which is very useful in this type of gas reservoirs. It is crucial to understand not only the porous system of these rocks and their mineralogy but also to project the gas flow in order to design the appropriate strategies for the stimulation of unconventional reservoirs. Keywords: mudstones; La Luna Formation; gas storage; migration; hydrocarbon.

Keywords: mudstones, La luna formation, gas storage, migration, hydrocarbon

Procedia PDF Downloads 73
185 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 243
184 Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K

Authors: Bilal Bhat, M. Masroor A. Khan, Moin Uddin, M. Naeem

Abstract:

Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy.

Keywords: mentha piperita, menthol, menthone, EO

Procedia PDF Downloads 496
183 Nucleophile Mediated Addition-Fragmentation Generation of Aryl Radicals from Aryl Diazonium Salts

Authors: Elene Tatunashvili, Bun Chan, Philippe E. Nashar, Christopher S. P. McErlean

Abstract:

The reduction of aryl diazonium salts is one of the most efficient ways to generate aryl radicals for use in a wide range of transformations, including Sandmeyer-type reactions, Meerwein arylations of olefins and Gomberg-Bachmann-Hey arylations of heteroaromatic systems. The aryl diazonium species can be reduced electrochemically, by UV irradiation, inner-sphere and outer-sphere single electron transfer processes (SET) from metal salts, SET from photo-excited organic catalysts or fragmentation of adducts with weak bases (acetate, hydroxide, etc.). This paper details an approach for the metal-free reduction of aryl diazonium salts, which facilitates the efficient synthesis of various aromatic compounds under exceedingly mild reaction conditions. By measuring the oxidation potential of a number of organic molecules, a series of nucleophiles were identified that reduce aryl diazonium salts via the addition-fragmentation mechanism. This approach leads to unprecedented operational simplicity: The reactions are very rapid and proceed in the open air; there is no need for external irradiation or heating, and the process is compatible with a large number of radical reactions. We illustrate these advantages by using the addition-fragmentation strategy to regioselectively arylate a series of heterocyclic compounds, to synthesize ketones by arylation of silyl enol ethers, and to synthesize benzothiophene and phenanthrene derivatives by radical annulation reactions.

Keywords: diazonium salts, hantzsch esters, oxygen, radical reactions, synthetic methods

Procedia PDF Downloads 146
182 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 19
181 Metabolic Costs and Chemical Profiles of Wax Production in Cryptolaemus montrouzieri and Tenuisvalvae notata

Authors: Nataly De La Pava, Christian S. A. Silva-Torres, Arodí P. Favaris, José Maurício S. Bento

Abstract:

The lady beetles Tenuisvalve notata and Cryptolaemus montrouzieri are important predators of mealybugs (Hemiptera: Pseudococcidae). Similar to the prey, these lady beetles produce wax filaments that cover their body during the larval stage. It has been hypothesized that lady beetle body wax chemical profiles are similar to their prey as i) a mechanism of camouflage and ii) conveying protection to the lady beetle larvae against aphid-tending predatory ants. In this study, we tested those hypotheses for the predators T. notata and C. montrouzieri and two mealybug prey species, Ferissia dasyrilii, and Planococcus citri. Next, we evaluated the influence of feeding on cuticular chemistry during predator development and identified possible metabolic costs associated with wax production. Cuticular wax samples were analyzed by GC-MS and GC-FID. Also, the metabolic cost linked to wax production was evaluated in the 4th instar larvae of the two predators when subjected to body wax removal from 0 to 4 times. Results showed that predator body wax profiles are not similar to the chemical profile of prey body wax. There was a metabolic cost associated with wax removal; predators (male and female) showed a significant reduction in adult body weight when the wax was removed. This suggests the reallocation of energy to wax replacement instead of growth. In addition, it was detected effects of wax removal on fecundity and egg viability. The results do not support the hypothesis that predators mimic the cuticular wax composition of prey as a means of camouflage.

Keywords: biological control, body wax, coccinellids, cuticular hydrocarbons, metabolism cost, reproduction

Procedia PDF Downloads 76
180 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 204
179 A Novel Marketable Dried Mixture for High-Quality Sweet Wine Production in Domestic Refrigerator Using Tubular Cellulose

Authors: Ganatsios Vassilios, Terpou Antonia, Maria Kanellaki, Bekatorou Argyro, Athanasios Koutinas

Abstract:

In this study, a new fermentation technology is proposed with potential application in home wine-making. Delignified cellulosic material was used to preserve Tubular Cellulose (TC), an effective fermentation support material in high osmotic pressure, low temperature, and alcohol concentration. The psychrotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 was immobilized on TC to preserve a novel home wine making biocatalyst (HWB) and the entrapment was examined by SEM. Various concentrations of HWB was added in high-density grape must and the mixture was dried immediately. The dried mixture was stored for various time intervals and its fermentation examined after addition of potable water. The percentage of added water was also examined to succeed high alcohol and residual sugar concentration. The effect of low temperature (1-10 oC) on fermentation kinetics was studied revealing the ability of HBW on low-temperature sweet wine making. Sweet wines SPME GC-MS analysis revealed the promotion effect of TC on volatile by-products formation in comparison with free cells. Kinetics results and aromatic profile of final product encouraged the efforts of high-quality sweet wine making in domestic refrigerator and potential marketable opportunities are also assessed and discussed.

Keywords: tubular cellulose, sweet wine, Saccharomyces cerevisiae AXAZ-1, residual sugar concentration

Procedia PDF Downloads 362
178 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 119
177 Thiazolo [5,4-d] Thiazole Based Polymers and Investigation of Optical Properties for Electronic Applications

Authors: Zeynep Dikmen, Vural Bütün

Abstract:

Electron donor or acceptor capability to participate in electron conjugation is the requirement for an electroactive material. Conjugated molecules and polymers bearing heterocyclic units have potential as optically electroactive materials. Thiazolo thiazole based compounds have attention for last two decades, because they have attractive electronic and optical properties, these compounds are useful for electronic application areas such as dye sentisized solar cells (DSSCs), organic light emitting diodes (OLEDs) and field effect transistors (FETs). Thiazolo[5,4-d]thiazole is bicyclic aromatic structure contains N and S atoms which act as electron donor. A new electron accepting or donating group bound to thiazolo [5,4-d] thiazole fused ring can change the electronic, spectroscopic, stability and dyeing properties of the new material. Polyphenylene(thiazolo [5,4-d] thiazole) (p-PhTT) compound was synthesized via condensation reaction of terephthalaldehyde with dithiooxamide. The chemical structure was determined with solid state 13C NMR spectroscopy. Optical properties (i.e. absorbance and band gap) was determined via solid UV-vis spectroscopy. The insoluble polymer was quarternized with 4-vinylbenzyl chloride (VBC). Colorless VBC changed into a yellow liquid. AgNO3 complex were prepared and optical properties were investigated with UV-Vis, fluorescence spectroscopy and X-ray spectroscopy and cyclic voltammetry studies were examined in this research. This structure exhibits good absorbance and fluorescence in UV-vis region. Synthesis scheme of PyTT and preparation of metal complexes are given. PyTT has absorbance at ~360 nm and fluorescence at ~420 nm.

Keywords: thiazolo thiazole, quarternized polymers, polymeric ligands, Ag complexes

Procedia PDF Downloads 260
176 Synthesis and Properties of Nanosized Mixed Oxide Systems for Environmental Protection

Authors: I. Yordanova, H. Kolev, S. Todorova, Z. Cherkezova-Zheleva

Abstract:

Catalysis plays a key role in solving many environmental problems by establishing efficient catalytic systems for environmental protection and reducing emissions of greenhouse gases from industry. Volatile organic compounds are major air pollutants. There are several ways to dispose of emissions like - adsorption, condensation, absorption, bio-filtration, thermal, catalytic, plasma and ultraviolet oxidation. The catalytic oxidation has more advantages over other methods. For example - lower energy consumption; the concentration of the organic contaminant may be low or may vary within wide limits. Catalysts for complete oxidation of VOCs can be classified into three categories: noble metal, metal oxides or supported metal oxides and mixture of noble metals and metal oxides. Most of the catalysts for the complete catalytic oxidation are based on Pt, Pd, Rh or a combination thereof. The oxides of the transition metal are one of the alternatives to noble metal catalysts for these reactions. They are less active at low temperatures, but at higher - their activity is similar. The properties of the catalyst depend on the distribution of the active phase, the medium type of the pre-treatment, the interaction between the active phase and the support and the interaction between the active phase and the reaction medium. Supported mono-component Mn and bi-component Mn-Co systems are examined in present study. The samples are prepared using co-precipitation method. SiO2 (Aerosil) is used as a support. The studied samples were precipitated by NH4OH. The synthesized samples were characterized by XRD, XPS, TPR and tested in the catalytic reaction of complete oxidation of n-hexane, propane, methanol, ethanol and propanol.

Keywords: catalytic oxidation, Co-Mn oxide, oxidation of hydrocarbons and alcohols, environmental protection

Procedia PDF Downloads 383
175 A Novel Method for Isolation of Kaempferol and Quercetin from Podophyllum Hexandrum Rhizome

Authors: S. B. Bhandare, K. S. Laddha

Abstract:

Podphyllum hexandrum belonging to family berberidaceae has gained attention in phytochemical and pharmacological research as it shows excellent anticancer activity and has been used in treatment of skin diseases, sunburns and radioprotection. Chemically it contains lignans and flavonoids such as kaempferol, quercetin and their glycosides. Objective: To isolate and identify Kaempferol and Quercetin from Podophyllum rhizome. Method: The powdered rhizome of Podophyllum hexandrum was subjected to soxhlet extraction with methanol. This methanolic extract is used to obtain podophyllin. Podohyllin was extracted with ethyl acetate and this extract was then concentrated and subjected to column chromatography to obtain purified kaempferol and quercetin. Result: Isolated kaempferol, quercetin were light yellow and dark yellow in colour respectively. TLC of the isolated compounds was performed using chloroform: methanol (9:1) which showed single band on silica plate at Rf 0.6 and 0.4 for kaempferol and quercetin. UV spectrometric studies showed UV maxima (methanol) at 259, 360 nm and 260, 370 nm which are identical with standard kaempferol and quercetin respectively. Both IR spectra exhibited prominent absorption bands for free phenolic OH at 3277 and 3296.2 cm-1 and for conjugated C=O at 1597 and 1659.7 cm-1 respectively. The mass spectrum of kaempferol and quercetin showed (M+1) peak at m/z 287 and 303.09 respectively. 1H NMR analysis of both isolated compounds exhibited typical four-peak pattern of two doublets at δ 6.86 and δ 8.01 which was assigned to H-3’,5’ and H-2’,6’ respectively. Absence of signals less than δ 6.81 in the 1H NMR spectrum supported the aromatic nature of compound. Kaempferol and Quercetin showed 98.1% and 97% purity by HPLC at UV 370 nm. Conclusion: Easy and simple method for isolation of Kaempferol and Quercetin was developed and their structures were confirmed by UV, IR, NMR and mass studies. Method has shown good reproducibility, yield and purity.

Keywords: flavonoids, kaempferol, podophyllum rhizome, quercetin

Procedia PDF Downloads 301
174 The Influence of the Regional Sectoral Structure on the Socio-Economic Development of the Arkhangelsk Region

Authors: K. G. Sorokozherdyev, E. A. Efimov

Abstract:

The socio-economic development of regions and countries is an important research issue. Today, in the face of many negative events in the global and regional economies, it is especially important to identify those areas that can serve as sources of economic growth and the basis for the well-being of the population. This study aims to identify the most important sectors of the economy of the Arkhangelsk region that can contribute to the socio-economic development of the region as a whole. For research, the Arkhangelsk region was taken as one of the typical Russian regions that do not have significant reserves of hydrocarbons nor there are located any large industrial complexes. In this regard, the question of possible origins of economic growth seems especially relevant. The basis of this study constitutes the distributed lag regression model (ADL model) developed by the authors, which is based on quarterly data on the socio-economic development of the Arkhangelsk region for the period 2004-2016. As a result, we obtained three equations reflecting the dynamics of three indicators of the socio-economic development of the region -the average wage, the regional GRP, and the birth rate. The influencing factors are the shares in GRP of such sectors as agriculture, mining, manufacturing, construction, wholesale and retail trade, hotels and restaurants, as well as the financial sector. The study showed that the greatest influence on the socio-economic development of the region is exerted by such industries as wholesale and retail trade, construction, and industrial sectors. The study can be the basis for forecasting and modeling the socio-economic development of the Arkhangelsk region in the short and medium term. It also can be helpful while analyzing the effectiveness of measures aimed at stimulating those or other industries of the region. The model can be used in developing a regional development strategy.

Keywords: regional economic development, regional sectoral structure, ADL model, Arkhangelsk region

Procedia PDF Downloads 97
173 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 116
172 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis

Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun

Abstract:

The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.

Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs

Procedia PDF Downloads 107
171 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates

Authors: Sarra Boughaba

Abstract:

The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.

Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study

Procedia PDF Downloads 111
170 Assessment of Isatin as Surface Recognition Group: Design, Synthesis and Anticancer Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors

Authors: Harish Rajak, Kamlesh Raghuwanshi

Abstract:

Histone deacetylase (HDAC) are promising target for cancer treatment. The panobinostat (Farydak; Novartis; approved by USFDA in 2015) and chidamide (Epidaza; Chipscreen Biosciences; approved by China FDA in 2014) are the novel HDAC inhibitors ratified for the treatment of patients with multiple myeloma and peripheral T cell lymphoma, respectively. On the other hand, two other HDAC inhibitors, Vorinostat (SAHA; approved by USFDA in 2006) and Romidepsin (FK228; approved by USFDA in 2009) are already in market for the treatment of cutaneous T-cell lymphoma. Several hydroxamic acid based HDAC inhibitors i.e., belinostat, givinostat, PCI24781 and JNJ26481585 are in clinical trials. HDAC inhibitors consist of three pharmacophoric features - an aromatic cap group, zinc binding group (ZBG) and a linker chain connecting cap group to ZBG. Herein, we report synthesis, characterization and biological evaluation of HDAC inhibitors possessing substituted isatin moiety as cap group which recognize the surface of active enzyme pocket and thiosemicarbazide moiety incorporated as linker group responsible for connecting cap group to ZBG (hydroxamic acid). Several analogues were found to inhibit HDAC and cellular proliferation of Hela cervical cancer cells with GI50 values in the micro molar range. Some of the compounds exhibited promising results in vitro antiproliferative studies. Attempts were also made to establish the structure activity relationship among synthesized HDAC inhibitors.

Keywords: HDAC inhibitors, hydroxamic acid derivatives, isatin derivatives, antiproliferative activity, docking

Procedia PDF Downloads 306
169 Rhizome-Soaking with Plant-Derived Smoke-Water (Pdsw) And Karrikinolide Boosts the Essential-Oil Yield, Active Constituents and Leaf Physiological Parameters of Mentha Arvensis L

Authors: Sarika Singh, Moin Uddin, M. Masroor A. Khan, Aman Sobia Chishti, Sangram Singh, Urooj Hassan Bhatt

Abstract:

Mentha arvensis L. (Japanese mint) is a perennial plant carrying medicinal, aromatic, antiseptic, and anaesthetic properties. Plant-derived smoke-water (PDSW) plays a significant role in seed germination, seedling growth, and other physiological attributes. To ascertain the effect of PDSW and karrikinolide on Mentha arvensis L., a rhizome-soaking experiment was conducted on Mentha arvensis. Prior to planting, mint rhizomes were soaked for 24 hours with aqueous solutions of various concentrations of PDSW (1:125v/v, 1:250 v/v, 1:500 v/v, and 1:1000 v/v), karrikinolide (10-6M, 10⁻⁷M, 10⁻⁸M, and 10⁻⁹M) using double distilled water as control treatment. Rhizome soaking with 1:500 v/v concentration of PDSW and 10⁻⁸M concentration of KAR1 increased the growth attributes, including plant height, fresh weight, dry, leaf area, and leaf yield per plant of Mentha arvensis. Leaf physiological-parameters, viz. chlorophyll fluorescence, PSII activity, and total chlorophyll and carotenoid content, were also increased as a result of the application of this treatment PDSW (1:500 v/v) and KAR1 (10⁻⁸M). In addition, treatment with 1:500 v/v and 10⁻⁸M significantly increased the essential oil yield and active constituents of Mentha arvensis compared to the control. Results indicated that PDSW, being a cheap source of karrikins, might be successfully used to augment mint essential oil production.

Keywords: active constituents, essential oil, medicinal plant, mentha arvensis L

Procedia PDF Downloads 87
168 The Taxonomic and Functional Diversity in Edaphic Microbial Communities from Antarctic Dry Valleys

Authors: Sean T. S. Wei, Joy D. Van Nostrand, Annapoorna Maitrayee Ganeshram, Stephen B. Pointing

Abstract:

McMurdo Dry Valleys are a largely ice-free polar desert protected by international treaty as an Antarctic special managed area. The terrestrial landscape is dominated by oligotrophic mineral soil with extensive rocky outcrops. Several environmental stresses: low temperature, lack of liquid water, UV exposure and oligotrophic substrates, restrict the major biotic component to microorganisms. The bacterial diversity and the putative physiological capacity of microbial communities of quartz rocks (hypoliths) and soil of a maritime-influenced Dry Valleys were interrogated by two metagenomic approaches: 454 pyro-sequencing and Geochp DNA microarray. The most abundant phylum in hypoliths was Cyanobacteria (46%), whereas in solils Actinobacteria (31%) were most abundant. The Proteobacteria and Bacteriodetes were the only other phyla to comprise >10% of both communities. Carbon fixation was indicated by photoautotrophic and chemoautotrophic pathways for both hypolith and soil communities. The fungi accounted for polymer carbon transformations, particularly for aromatic compounds. The complete nitrogen cycling was observed in both communities. The fungi in particular displayed pathways related to ammonification. Environmental stress response pathways were common among bacteria, whereas the nutrient stress response pathways were more widely present in bacteria, archaea and fungi. The diversity of bacterialphage was also surveyed by Geochip. Data suggested that different substrates supported different viral families: Leviviridae, Myoviridae, Podoviridae and Siphoviridiae were ubiquitous. However, Corticoviridae and Microviridae only occurred in wetter soils.

Keywords: Antarctica, hypolith, soil, dry valleys, geochip, functional diversity, stress response

Procedia PDF Downloads 446
167 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 287
166 Larvicidal Activity of Azadirachtin and Essential Oils from Thymus capitatus against Prays oleae Bern (Lepidoptera, Yponomeutidae)

Authors: Imen Blibech, Mohiedine Ksantini, Mohamed Bouaziz

Abstract:

Prays oleae is a major insect of olive in the Mediterranean Region. In an effort to find effective and affordable ways of controlling this pest, larvicidal activity of essential oils from Tunisian Thymus capitatus were analyzed in comparison to Azadirachtin, a biologically active compound insecticide. The essential oils were extracted by hydrodistillation, and their chemical composition was determined by gas liquid-chromatography coupled with mass spectroscopy. The main components of chemical components were oxygenated monoterpenes (60.24%). The most abundant oxygenated monoterpenes were carvacrol (54.11%). Monoterpenes hydrocarbons were much more abundant and dominated by the o-cymene (16.68%). Both active compounds of Azadirachtin and Thymus capitatus oil extracts exhibited significant larvicidal activity against P. oleae with LC50 values 81.30 ppm and 52.49 ppm respectively. Dose-response relationships were established with almost 100% mortality when using the highest dose 100 ppm of T. capitatus oil extracts and 80 ppm of Azadirachtin. At the lowest dose (10 ppm), T. capitatus oil extracts and Azadirachtin caused 60% and 76% larval mortality in 48 hours respectively. The larval mortality rate greatly decreased with increases of the dilution of both oil extract compounds. Larval development duration appeared to be prolonged to about 12 days for larvae feeding on control diet. The maximum antifeedant activity was shown by both T. capitatus oil extract and Azadirachtin at LC90 values (47.5 and 50.1 ppm respectively). Tunisian T. capitatus oil extract used at low concentrations could be considered as eco-friendly promising insecticide similar to Azadirachtin that has significant potential for the biological control of P. oleae.

Keywords: Thymus capitatus, chemical composition, azadirachtin, larvicidal effects, antifeedant activity, Prays oleae

Procedia PDF Downloads 195
165 Synthesis, Characterization and Catecholase Study of Novel Bidentate Schiff Base Derived from Dehydroacetic Acid

Authors: Salima Tabti, Chaima Maouche, Tinhinene Louaileche, Amel Djedouani, Ismail Warad

Abstract:

Novel Schiff base ligand HL has been synthesized by condensation of aromatic amine and DHA. It was characterized by UV-Vis, FT-IR, SM, NMR (1H, 13C) and also by single-crystal X-ray diffraction. The crystal structure shows that compound crystallized in a triclinic system in P-1 space group and with a two unit per cell (Z = 2).The asymmetric unit, contains one independent molecules, the conformation is determined by an intermolecular N-H…O hydrogen bond with an S(6) ring motif. The molecule have an (E) conformation about the C=N bond. The dihedral angles between the phenyl and pyran ring planes is 89.37 (1), the two plans are approximately perpendicular. The catecholase activity of is situ copper complexes of this ligand has been investigated against catechol. The progress of the oxidation reactions was closely monitored over time following the strong peak of catechol using UV-Vis. Oxidation rates were determined from the initial slope of absorbance. time plots, then analyzed by Michaelis-Menten equations. Catechol oxidation reactions were realized using different concentrations of copper acetate and ligand (L/Cu: 1/1, 1/2, 2/1). The results show that all complexes were able to catalyze the oxidation of catechol. Acetate complexes have the highest activity. Catalysis is a branch of chemical kinetics that, more generally, studies the influence of all physical or chemical factors determining reaction rates. It solves a lot of problems in the chemistry reaction process, especially for a green, economic and less polluting chemistry. For this reason, the search for new catalysts for known organic reactions, occupies a very advanced place in the themes proposed by the chemists.

Keywords: dehydroacetic acid, catechol, copper, catecholase activity, x-ray

Procedia PDF Downloads 104
164 Microbial Degradation of Lignin for Production of Valuable Chemicals

Authors: Fnu Asina, Ivana Brzonova, Keith Voeller, Yun Ji, Alena Kubatova, Evguenii Kozliak

Abstract:

Lignin, a heterogeneous three-dimensional biopolymer, is one of the building blocks of lignocellulosic biomass. Due to its limited chemical reactivity, lignin is currently processed as a low-value by-product in pulp and paper mills. Among various industrial lignins, Kraft lignin represents a major source of by-products generated during the widely employed pulping process across the pulp and paper industry. Therefore, valorization of Kraft lignin holds great potential as this would provide a readily available source of aromatic compounds for various industrial applications. Microbial degradation is well known for using both highly specific ligninolytic enzymes secreted by microorganisms and mild operating conditions compared with conventional chemical approaches. In this study, the degradation of Indulin AT lignin was assessed by comparing the effects of Basidiomycetous fungi (Coriolus versicolour and Trametes gallica) and Actinobacteria (Mycobacterium sp. and Streptomyces sp.) to two commercial laccases, T. versicolour ( ≥ 10 U/mg) and C. versicolour ( ≥ 0.3 U/mg). After 54 days of cultivation, the extent of microbial degradation was significantly higher than that of commercial laccases, reaching a maximum of 38 wt% degradation for C. versicolour treated samples. Lignin degradation was further confirmed by thermal carbon analysis with a five-step temperature protocol. Compared with commercial laccases, a significant decrease in char formation at 850ºC was observed among all microbial-degraded lignins with a corresponding carbon percentage increase from 200ºC to 500ºC. To complement the carbon analysis result, chemical characterization of the degraded products at different stages of the delignification by microorganisms and commercial laccases was performed by Pyrolysis-GC-MS.

Keywords: lignin, microbial degradation, pyrolysis-GC-MS, thermal carbon analysis

Procedia PDF Downloads 407
163 On the Qarat Kibrit Salt Dome Faulting System South of Adam, Oman: In Search of Uranium Anomalies

Authors: Alaeddin Ebrahimi, Narasimman Sundararajan, Bernhard Pracejus

Abstract:

Development of salt domes, often a rising from depths of some 10 km or more, causes an intense faulting of the surrounding host rocks (salt tectonics). The fractured rocks then present ideal space for oil that can migrate and get trapped. If such moving of hydrocarbons passes uranium-carrying rock units (e.g., shales), uranium is collected and enriched by organic carbon compounds. Brines from the salt body are also ideal carriers for oxidized uranium species and will further dislocate uranium when in contact with uranium-enriched oils. Uranium then has the potential to mineralize in the vicinity of the dome (blue halite is evidence for radiation having affected salt deposits elsewhere in the world). Based on this knowledge, the Qarat Kibrit salt dome was investigated by a well-established geophysical method like very low frequency electromagnetic (VLF-EM) along five traverses approximately 250 m in length (10 m intervals) in order to identify subsurface fault systems. In-phase and quadrature components of the VLF-EM signal were recorded at two different transmitter frequencies (24.0 and 24.9 kHz). The images of Fraser filtered response of the in-phase components indicate a conductive zone (fault) in the southeast and southwest of the study area. The Karous-Hjelt current density pseudo section delineates subsurface faults at depths between 10 and 40 m. The stacked profiles of the Fraser filtered responses brought out two plausible trends/directions of faults. However, there seems to be no evidence for uranium enrichment has been recorded in this area.

Keywords: salt dome, uranium, fault, in-phase component, quadrature component, Fraser filter, Karous-Hjelt current density

Procedia PDF Downloads 233
162 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork

Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek

Abstract:

The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.

Keywords: compounding, functional products, delicatessen products, brine, vegetable additives

Procedia PDF Downloads 173
161 The Utilization of Tea Extract within the Realm of the Food Industry

Authors: Raana Babadi Fathipour

Abstract:

Tea, a beverage widely cherished across the globe, has captured the interest of scholars with its recent acknowledgement for possessing noteworthy health advantages. Of particular significance is its proven ability to ward off ailments such as cancer and cardiovascular afflictions. Moreover, within the realm of culinary creations, lipid oxidation poses a significant challenge for food product development. In light of these aforementioned concerns, this present discourse turns its attention towards exploring diverse methodologies employed in extracting polyphenols from various types of tea leaves and examining their utility within the vast landscape of the ever-evolving food industry. Based on the discoveries unearthed in this comprehensive investigation, it has been determined that the fundamental constituents of tea are polyphenols possessed of intrinsic health-enhancing properties. This includes an assortment of catechins, namely epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Moreover, gallic acid, flavonoids, flavonols and theaphlavins have also been detected within this aromatic beverage. Of these myriad components examined vigorously in this study's analysis, catechin emerges as particularly beneficial. Multiple techniques have emerged over time to successfully extract key compounds from tea plants, including solvent-based extraction methodologies, microwave-assisted water extraction approaches and ultrasound-assisted extraction techniques. In particular, consideration is given to microwave-assisted water extraction method as a viable scheme which effectively procures valuable polyphenols from tea extracts. This methodology appears adaptable for implementation within sectors such as dairy production along with meat and oil industries alike.

Keywords: camellia sinensis, extraction, food application, shelf life, tea

Procedia PDF Downloads 66
160 Carbon Blacks: A Broad Type of Carbon Materials with Different Electrocatalytic Activity to Produce H₂O₂

Authors: Alvaro Ramírez, Martín Muñoz-Morales, Ester López- Fernández, Javier Llanos, C. Ania

Abstract:

Carbon blacks are value-added materials typically produced through the incomplete combustion or thermal decomposition of hydrocarbons. Traditionally, they have been used as catalysts in many different applications, but in the last decade, their potential in green chemistry has gained significant attention. Among them, the electrochemical production of H₂O₂ has attracted interest because of their properties as high oxidant capacity or their industrial interest as a bleaching agent. Carbon blacks are commonly used in this application in a catalytic ink that is drop-casted on supporting electrodes and acts as catalysts for the electrochemical production of H₂O₂ through oxygen reduction reaction (ORR). However, the different structural and electrochemical behaviors of each type of carbon black influence their applications. In this line, the term ‘carbon black’, has to be considered as a generic name that does not guarantee any physicochemical properties if any further description is mentioned. In fact, different specific surface area (SSA), surface functional groups, porous structure, and electro catalysts effect seem very important for electrochemical applications, and considerable differences were found during the analysis of four types of carbon blacks. Thus, the aim of this work is to evaluate the influence of SSA, porous structure, oxygen functional groups, and structural defects to differentiate among these carbon blacks (e.g. Vulcan XC72, Superior Graphite Co, Printex XE2, and Prolabo) for H₂O₂ production via ORR, using carbon paper as electrode support with improved selectivity and efficiency. Results indicate that the number and size of pores, along with surface functional groups, are key parameters that significantly affect the overall process efficiency.

Keywords: carbon blacks, oxygen reduction reaction, hydrogen peroxide, porosity, surface functional groups

Procedia PDF Downloads 39
159 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers

Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi

Abstract:

Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation

Procedia PDF Downloads 479
158 Catalytic Synthesis and Characterization of N-(4-(Tert-Butyl) Benzyl)-1-(4-Tert-Butyl) Phenyl)-N-Methyl Methanaminium Chloride from Tert-Butyl Benzyl Derivatives

Authors: Muhammad A. Muhammad

Abstract:

Butenafine (N-4-tert-butyl benzyl-N-methyl-1-naphthylene methylamine hydrochloride) is a benzylamine antimycotic (antifungal) agent that has a broad spectrum of action. The quest for improved antimycotic action brought about many research on the structure-activity properties of butenafine in relation to other antifungal agents. Of all those research, only little or no effort was recorded on the substituents attached to the aromatic systems in butenafine. In this research, N-(4-(tert-butyl) benzyl)-1-(4-tert-butyl) phenyl)-N-methyl methanaminium chloride, which is a butenafine analogue was synthesised from tert-butyl benzyl derivatives, by reductive amination using various solvents through a direct approach, where 1,2-dichloroethane gave the best solvent action at 40 °C (Yield: 75%) and of all the reducing agents used, sodium borohydride was found to give the best reducing action in the presence of silica chloride at room temperature (Yield: 50%). Characterization of the compound by 1H NMR showed a singlet peak of 18 hydrogen atoms with a chemical shift at 1.3-1.5 ppm for the presence of 6 methyl groups in the two tert-butyl substituents, the 13C NMR also indicated the presence of the two tert-butyl substituents by the peak with a chemical shift at 31-32 ppm for the six methyl carbon atoms, the IR indicated the presence of a tertiary ammonium ion by a strong band at 2460 cm-1 and finally the EIS-MS confirmed the molar mass of the compound by a mass to charge ratio of 324.2693. These results suggested that the target molecule was actually synthesised and therefore, 1,2-dichloroethane is a good solvent for this synthesis, and the most suitable reducing agent is sodium borohydride.

Keywords: antimicrobial agents, antimycotic agents, butenafine, chemotherapeutic agents, semisynthetic agents

Procedia PDF Downloads 291
157 Selection of Potential Starter Using Their Transcription Level

Authors: Elif Coskun Daggecen, Seyma Dokucu, Yekta Gezginc, Ismail Akyol

Abstract:

Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results.

Keywords: gene expression, RT-PCR, starter culture, Streptococcus thermophilus

Procedia PDF Downloads 184