Search results for: mass curve
374 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra
Authors: Amin Asgarian, Ghyslaine McClure
Abstract:
Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design
Procedia PDF Downloads 236373 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 150372 Pulsed-Wave Doppler Ultrasonographic Assessment of the Maximum Blood Velocity in Common Carotid Artery in Horses after Administration of Ketamine and Acepromazine
Authors: Saman Ahani, Aboozar Dehghan, Roham Vali, Hamid Salehian, Amin Ebrahimi
Abstract:
Pulsed-wave (PW) doppler ultrasonography is a non-invasive, relatively accurate imaging technique that can measure blood speed. The imaging could be obtained via the common carotid artery, as one of the main vessels supplying the blood of vital organs. In horses, factors such as susceptibility to depression of the cardiovascular system and their large muscular mass have rendered them vulnerable to changes in blood speed. One of the most important factors causing blood velocity changes is the administration of anesthetic drugs, including Ketamine and Acepromazine. Thus, in this study, the Pulsed-wave doppler technique was performed to assess the highest blood velocity in the common carotid artery following administration of Ketamine and Acepromazine. Six male and six female healthy Kurdish horses weighing 351 ± 46 kg (mean ± SD) and aged 9.2 ± 1.7 years (mean ± SD) were housed under animal welfare guidelines. After fasting for six hours, the normal blood flow velocity in the common carotid artery was measured using a Pulsed-wave doppler ultrasonography machine (BK Medical, Denmark), and a high-frequency linear transducer (12 MHz) without applying any sedative drugs as a control group. The same procedure was repeated after each individual received the following medications: 1.1, 2.2 mg/kg Ketamine (Pfizer, USA), and 0.5, 1 mg/kg Acepromizine (RACEHORSE MEDS, Ukraine), with an interval of 21 days between the administration of each dose and/or drug. The ultrasonographic study was done five (T5) and fifteen (T15) minutes after injecting each dose intravenously. Lastly, the statistical analysis was performed using SPSS software version 22 for Windows and a P value less than 0.05 was considered to be statistically significant. Five minutes after administration of Ketamine (1.1, 2.2 mg/kg) in both male and female horses, the blood velocity decreased to 38.44, 34.53 cm/s in males, and 39.06, 34.10 cm/s in females in comparison to the control group (39.59 and 40.39 cm/s in males and females respectively) while administration of 0.5 mg/kg Acepromazine led to a significant rise (73.15 and 55.80 cm/s in males and females respectively) (p<0.05). It means that the most drastic change in blood velocity, regardless of gender, refers to the latter dose/drug. In both medications and both genders, the increase in doses led to a decrease in blood velocity compared to the lower dose of the same drug. In all experiments in this study, the blood velocity approached its normal value at T15. In another study comparing the blood velocity changes affected by Ketamine and Acepromazine through femoral arteries, the most drastic changes were attributed to Ketamine; however, in this experiment, the maximum blood velocity was observed following administration of Acepromazine via the common carotid artery. Therefore, further experiments using the same medications are suggested using Pulsed-wave doppler measuring the blood velocity changes in both femoral and common carotid arteries simultaneously.Keywords: Acepromazine, common carotid artery, horse, ketamine, pulsed-wave doppler ultrasonography
Procedia PDF Downloads 128371 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion
Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan
Abstract:
In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion
Procedia PDF Downloads 218370 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products
Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola
Abstract:
The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.Keywords: decision making, design euristics, product design, product design process, design paradigms
Procedia PDF Downloads 119369 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals
Procedia PDF Downloads 93368 The Influence of Nutritional and Immunological Status on the Prognosis of Head and Neck Cancer
Authors: Ching-Yi Yiu, Hui-Chen Hsu
Abstract:
Objectives: Head and neck cancer (HNC) is a big global health problem in the world. Despite the development of diagnosis and treatment, the overall survival of HNC is still low. The well recognition of the interaction of the host immune system and cancer cells has led to realizing the processes of tumor initiation, progression and metastasis. Many systemic inflammatory responses have been shown to play a crucial role in cancer progression. The pre and post-treatment nutritional and immunological status of HNC patients is a reliable prognostic indicator of tumor outcomes and survivors. Methods: Between July 2020 to June 2022, We have enrolled 60 HNC patients, including 59 males and 1 female, in Chi Mei Medical Center, Liouying, Taiwan. The age distribution was from 37 to 81 years old (y/o), with a mean age of 57.6 y/o. We evaluated the pre-and post-treatment nutritional and immunological status of these HNC patients with body weight, body weight loss, body mass index (BMI), whole blood count including hemoglobin (Hb), lymphocyte, neutrophil and platelet counts, biochemistry including prealbumin, albumin, c-reactive protein (CRP), with the time period of before treatment, post-treatment 3 and 6 months. We calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) to assess how these biomarkers influence the outcomes of HNC patients. Results: We have carcinoma of the hypopharynx in 21 cases with 35%, carcinoma of the larynx in 9 cases, carcinoma of the tonsil and tongue every 6 cases, carcinoma soft palate and tongue base every 5 cases, carcinoma of buccal mucosa, retromolar trigone and mouth floor every 2 cases, carcinoma of the hard palate and low lip each 1 case. There were stage I 15 cases, stage II 13 cases, stage III 6 cases, stage IVA 10 cases, and stage IVB 16 cases. All patients have received surgery, chemoradiation therapy or combined therapy. We have wound infection in 6 cases, 2 cases of pharyngocutaneous fistula, flap necrosis in 2 cases, and mortality in 6 cases. In the wound infection group, the average BMI is 20.4 kg/m2; the average Hb is 12.9 g/dL, the average albumin is 3.5 g/dL, the average NLR is 6.78, and the average PLR is 243.5. In the PC fistula and flap necrosis group, the average BMI is 21.65 kg/m2; the average Hb is 11.7 g/dL, the average albumin is 3.15 g/dL, average NLR is 13.28, average PLR is 418.84. In the mortality group, the average BMI is 22.3 kg/m2; the average Hb is 13.58 g/dL, the average albumin is 3.77 g/dL, the average NLR is 6.06, and the average PLR is 275.5. Conclusion: HNC is a big challenging public health problem worldwide, especially in the high prevalence of betel nut consumption area Taiwan. Besides the definite risk factors of smoking, drinking and betel nut related, the other biomarkers may play significant prognosticators in the HNC outcomes. We concluded that the average BMI is less than 22 kg/m2, the average Hb is low than 12.0 g/dL, the average albumin is low than 3.3 g/dL, the average NLR is low than 3, and the average PLR is more than 170, the surgical complications and mortality will be increased, and the prognosis is poor in HNC patients.Keywords: nutritional, immunological, neutrophil-to-lymphocyte ratio, paltelet-to-lymphocyte ratio.
Procedia PDF Downloads 79367 Quantifying Fatigue during Periods of Intensified Competition in Professional Ice Hockey Players: Magnitude of Fatigue in Selected Markers
Authors: Eoin Kirwan, Christopher Nulty, Declan Browne
Abstract:
The professional ice hockey season consists of approximately 60 regular season games with periods of fixture congestion occurring several times in the average season. These periods of congestion provide limited time for recovery, exposing the athletes to the risk of competing whilst not fully recovered. Although a body of research is growing with respect to monitoring fatigue, particularly during periods of congested fixtures in team sports such as rugby and soccer, it has received little to no attention thus far in ice hockey athletes. Consequently, there is limited knowledge on monitoring tools that might effectively detect a fatigue response and the magnitude of fatigue that can accumulate when recovery is limited by competitive fixtures. The benefit of quantifying and establishing fatigue status is the ability to optimise training and provide pertinent information on player health, injury risk, availability and readiness. Some commonly used methods to assess fatigue and recovery status of athletes include the use of perceived fatigue and wellbeing questionnaires, tests of muscular force and ratings of perceive exertion (RPE). These measures are widely used in popular team sports such as soccer and rugby and show promise as assessments of fatigue and recovery status for ice hockey athletes. As part of a larger study, this study explored the magnitude of changes in adductor muscle strength after game play and throughout a period of fixture congestion and examined the relationship between internal game load and perceived wellbeing with adductor muscle strength. Methods 8 professional ice hockey players from a British Elite League club volunteered to participate (age = 29.3 ± 2.49 years, height = 186.15 ± 6.75 cm, body mass = 90.85 ± 8.64 kg). Prior to and after competitive games each player performed trials of the adductor squeeze test at 0˚ hip flexion with the lead investigator using hand-held dynamometry. Rate of perceived exertion was recorded for each game and from data of total ice time individual session RPE was calculated. After each game players completed a 5- point questionnaire to assess perceived wellbeing. Data was collected from six competitive games, 1 practice and 36 hours post the final game, over a 10 – day period. Results Pending final data collection in February Conclusions Pending final data collection in February.Keywords: Conjested fixtures, fatigue monitoring, ice hockey, readiness
Procedia PDF Downloads 142366 Biodegradation Ability of Polycyclic Aromatic Hydrocarbon (PAHs) Degrading Bacillus cereus Strain JMG-01 Isolated from PAHs Contaminated Soil
Authors: Momita Das, Sofia Banu, Jibon Kotoky
Abstract:
Environmental contamination of natural resources with persistent organic pollutants is of great world-wide apprehension. Polycyclic aromatic hydrocarbons (PAHs) are among the organic pollutants, released due to various anthropogenic activities. Due to their toxic, carcinogenic and mutagenic properties, PAHs are of environmental and human concern. Presently, bioremediation has evolved as the most promising biotechnology for cleanup of such contaminants because of its economical and less cost effectiveness. In the present study, distribution of 16 USEPA priority PAHs was determined in the soil samples collected from fifteen different sites of Guwahati City, the Gateway of the North East Region of India. The total concentrations of 16 PAHs (Σ16 PAHs) ranged from 42.7-742.3 µg/g. Higher concentration of total PAHs was found more in the Industrial areas compared to all the sites (742.3 µg/g and 628 µg/g). It is noted that among all the PAHs, Naphthalene, Acenaphthylene, Anthracene, Fluoranthene, Chrysene and Benzo(a)Pyrene were the most available and contain the higher concentration of all the PAHs. Since microbial activity has been deemed the most influential and significant cause of PAH removal; further, twenty-three bacteria were isolated from the most contaminated sites using the enrichment process. These strains were acclimatized to utilize naphthalene and anthracene, each at 100 µg/g concentration as sole carbon source. Among them, one Gram-positive strain (JMG-01) was selected, and biodegradation ability and initial catabolic genes of PAHs degradation were investigated. Based on 16S rDNA analysis, the isolate was identified as Bacillus cereus strain JMG-01. Topographic images obtained using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) at scheduled time intervals of 7, 14 and 21 days, determined the variation in cell morphology during the period of degradation. AFM and SEM micrograph of biomass showed high filamentous growth leading to aggregation of cells in the form of biofilm with reference to the incubation period. The percentage degradation analysis using gas chromatography and mass analyses (GC-MS) suggested that more than 95% of the PAHs degraded when the concentration was at 500 µg/g. Naphthalene, naphthalene-2-methy, benzaldehyde-4-propyl, 1, 2, benzene di-carboxylic acid and benzene acetic acid were the major metabolites produced after degradation. Moreover, PCR experiments with specific primers for catabolic genes, ndo B and Cat A suggested that JMG-01 possess genes for PAHs degradation. Thus, the study concludes that Bacillus cereus strain JMG-01 has efficient biodegrading ability and can trigger the clean-up of PAHs contaminated soil.Keywords: AFM, Bacillus cereus strain JMG-01, degradation, polycyclic aromatic hydrocarbon, SEM
Procedia PDF Downloads 274365 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones
Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić
Abstract:
Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials
Procedia PDF Downloads 249364 Immune Disregulation in Inflammatory Skin Diseases with Comorbid Metabolic Disorders
Authors: Roman Khanferyan, Levon Gevorkyan, Ivan Radysh
Abstract:
Skin barrier dysfunction induces multiple inflammatory skin diseases. Epidemiological studies clearly support the link between most dermatological pathologies, immune disorders and metabolic disorders. Among them most common are psoriasis (PS) and Atopic dermatitis (AD). Psoriasis is a chronic immune-mediated inflammatory skin disease that affects 1.5 to 3.0% of the world's population. Comorbid metabolic disorders play an important role in the progression of PS and AD, as well. It is well known that PS, AD and overweight/obesity are associated with common pathophysiological mechanisms of mild chronic inflammation. The goal of the study was to study the immune disturbances in patients with PS, AD and comorbid metabolic disorders. To study the prevalence of comorbidity of PS and AD (data from 1406 patient’s histories of diseases) were analyzed. The severity of the disease is assessed using the PASI index (Psoriasis Area and Severity Index). 59 patients with psoriasis of different localizations of lesions and severity, as well as with different body mass index (BMI), were examined. The determination of the concentration of pro-inflammatory cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNFa) and chemokines (RANTES, IP-10, MCP-1 and Eotaxin) in sera and supernatants of 48h-cultivated peripheral blood mononuclear cell (PBMC) of psoriasis patients and healthy volunteers (36 adults) have been carried out by multiplex assay (Luminex Corporation, USA). It has been demonstrated that 42% of PS patients had comorbidity with different types of atopies. The most common was bronchial asthma and allergic rhinitis. At the same time, the prevalence of AD in PS patients was determined in 8.7% of patients. It has been shown that serum levels of all studied cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNF) in most of the studied patients were higher in PS patients than in those with AD and healthy controls (p<0.05). An in vitro synthesis of the IL-6 and IFNγ by PBMC demonstrated similar results to those determined in blood sera. There was a high correlation between BMI, immune mediators and the concentrations of adipokines and chemokines (p<0.05). The concentrations of Leptin and Resistin in obese psoriatic patients were greater by 28.6% and 17%, respectively, compared to non-obese psoriatic patients. In obese patients with psoriasis the serum levels of adiponectin were decreased up to 1.3-fold. The mean serum RANTES, IP-10, MCP-1, EOTAXIN levels in obese psoriatic patients were decreased by up to 13.1%, 21.9%, 40.4% and 28.2%, respectively. Similar results have been demonstrated in AD patients with comorbid overweight and obesity. Thus, the study demonstrated the important role of cytokines and chemokines dysregulation in inflammatory skin diseases, especially in patients with comorbid obesity and overweight. Metabolic disorders promote the severity of PS and AD, highly increase immune dysregulation, and synthesis of adipokines, which correlates with the production of proinflammatory immune mediators in comorbid obesity and overweight.Keywords: psoriasis, atopic dermatitis, pro-inflammatory cytokines, chemokines, comorbid obesity
Procedia PDF Downloads 35363 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance
Authors: Giorgia Carratta
Abstract:
Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.Keywords: environmental law, European union, governance, plastic pollution, sustainability
Procedia PDF Downloads 107362 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 100361 The Effectiveness of Multiphase Flow in Well- Control Operations
Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia
Abstract:
Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic
Procedia PDF Downloads 118360 Food Insecurity Among Afghan Women Refugees in Pakistan
Authors: Farhana Nosheen, Maleeha Fatima
Abstract:
This study on Afghan refugee women living in Punjab, Pakistan, shows a strong relationship between poor socio-economic status and lower nutritional health status. Pakistan is one of the significant countries accepting refugees from the Afghan war. Universally, refugees are vulnerable to food security and basic life necessities. The in-hand study aimed to investigate food insecurity among afghan refugees who recently migrated to Pakistan. Purposive sampling technique was employed to collect the data from afghan women refugees settled in refugee camp settled in Capital city Islamabad, Pakistan. Data was collected through an interview tool. It revealed from data that the majority of women were underweight, about 74.7% in their reproductive years, which is an alarming situation for the forthcoming children and families. It is also shown that There’s a strong impact of their income level, education, dietary habits and food insecurity on their overall health status. It can also be observed in their Body Mass Index and in their physical appearance; they also show extremely poor levels of hemoglobin which is directly indicated anemic condition, especially iron deficiency anemia among the young Afghan refugee women. The illiteracy rate is about 93.33% among the selected participants as well as a majority of this population has 10-12 family size in comparison with their income level of about 10,000-15,000 Pakistani rupees per month, which can hardly meet their daily food expenditure. Adequate food is rarely accessible to young girls and women due to fewer national and international food aids program available in Pakistan. The majority have pale yellowish skin color (due to low iron content) along with clear white eyes (low hemoglobin level), thin hairs (protein deficiency) and spoon-shaped nails (a direct indicator of low iron level). Data showed a significant relation between appetite and BMI as their appetite is very low, which is directly indicated in their underweight body condition. About 56.67% of the participants had Urinary Tract Infections. The main causes included personal unhygienic conditions and lack of washrooms as well as drinking water facilities in their refugee camps. It is suggested that National and international food aid programs should cater to the nutritional demands of women refugees in the world to protect them from food insecurities as well as future researchers should find out better ways of analysis and treatment plans for such kind of communities who are highly prone to nutritional deficiencies and lack of basic supplies.Keywords: food insecurity, refugees, women, vulnerable
Procedia PDF Downloads 101359 Preliminary Analysis on the Distribution of Elements in Cannabis
Authors: E. Zafeiraki, P. Nisianakis, K. Machera
Abstract:
Cannabis plant contains 113 cannabinoids and it is commonly known for its psychoactive substance tetrahydrocannabinol or as a source of narcotic substances. The recent years’ cannabis cultivation also increases due to its wide use both for medical and industrial purposes as well as for uses as para-pharmaceuticals, cosmetics and food commodities. Depending on the final product, different parts of the plant are utilized, with the leaves and bud (seeds) being the most frequently used. Cannabis can accumulate various contaminants, including heavy metals, both from the soil and the water in which the plant grows. More specifically, metals may occur naturally in the soil and water, or they can enter into the environment through fertilizers, pesticides and fungicides that are commonly applied to crops. The high probability of metals accumulation in cannabis, combined with the latter growing use, raise concerns about the potential health effects in humans and consequently lead to the need for the implementation of safety measures for cannabis products, such as guidelines for regulating contaminants, including metals, and especially the ones characterized by high toxicity in cannabis. Acknowledging the above, the aim of the current study was first to investigate metals contamination in cannabis samples collected from Greece, and secondly to examine potential differences in metals accumulation among the different parts of the plant. To our best knowledge, this is the first study presenting information on elements in cannabis cultivated in Greece, and also on the distribution pattern of the former in the plant body. To this end, the leaves and the seeds of all the samples were initially separated and dried and then digested with Nitric acid (HNO₃) and Hydrochloric acid (HCl). For the analysis of these samples, an Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) method was developed, able to quantify 28 elements. Internal standards were added at a constant rate and concentration to all calibration standards and unknown samples, while two certified reference materials were analyzed in every batch to ensure the accuracy of the measurements. The repeatability of the method and the background contamination were controlled by the analysis of quality control (QC) standards and blank samples in every sequence, respectively. According to the results, essential metals, such as Ca, Zn and Mg, were detected at high levels. On the contrary, the concentration of high toxicity metals, like As (average: 0.10ppm), Pb (average: 0.36ppm), Cd (average: 0.04ppm), and Hg (average: 0.012ppm) were very low in all the samples, indicating that no harmful effects on human health can be caused by the analyzed samples. Moreover, it appears that the pattern of contamination of metals is very similar in all the analyzed samples, which could be attributed to the same origin of the analyzed cannabis, i.e., the common soil composition, use of fertilizers, pesticides, etc. Finally, as far as the distribution pattern between the different parts of the plant is concerned, it was revealed that leaves present a higher concentration in comparison to seeds for all metals examined.Keywords: cannabis, heavy metals, ICP-MS, leaves and seeds, elements
Procedia PDF Downloads 99358 Analytical Tools for Multi-Residue Analysis of Some Oxygenated Metabolites of PAHs (Hydroxylated, Quinones) in Sediments
Authors: I. Berger, N. Machour, F. Portet-Koltalo
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems – HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS) – were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step.Keywords: derivatizations for GC-MS, microwave assisted extraction, on-line HPLC-UV-FLD, oxygenated PAHs, polluted sediments
Procedia PDF Downloads 287357 Effects of Transit Fare Discount Programs on Passenger Volumes and Transferring Behaviors
Authors: Guan-Ying Chen, Han-Tsung Liou, Shou-Ren Hu
Abstract:
To address traffic congestion problems and encourage the use of public transportation systems in the Taipei metropolitan area, the Taipei City Government and the New Taipei City Government implemented a monthly ticket policy on April 16, 2018. This policy offers unlimited rides on the Taipei MRT, Taipei City Bus, New Taipei City Bus, Danhai Light Rail, and Public Bike (YouBike) on a monthly basis. Additionally, both city governments replaced the smart card discount policy with a new frequent flyer discount program (referred to as the loyal customer program) on February 1, 2020, introducing a differential pricing policy. Specifically, the more frequently the Taipei MRT system is used, the greater the discounts users receive. To analyze the impact of the Taipei public transport monthly ticket policy and the frequent user discount program on the passenger volume of the Taipei MRT system and the transferring behaviors of MRT users, this study conducts a trip-chain analysis using transaction data from Taipei MRT smart cards between September 2017 and December 2020. To achieve these objectives, the study employs four indicators: 1) number of passengers, 2) average number of rides, 3) average trip distance, and 4) instances of multiple consecutive rides. The study applies the t-test and Mann-Kendall trend test to investigate whether the proposed indicators have changed over time due to the implementation of the discount policy. Furthermore, the study examines the travel behaviors of passengers who use monthly tickets. The empirical results of the study indicate that the implementation of the Taipei public transport monthly ticket policy has led to an increase in the average number of passengers and a reduction in the average trip distance. Moreover, there has been a significant increase in instances of multiple consecutive rides, attributable to the unlimited rides offered by the monthly tickets. The impact of the frequent user discount program on changes in MRT passengers is not as pronounced as that of the Taipei public transportation monthly ticket policy. This is partly due to the fact that the frequent user discount program is only applicable to the Taipei MRT system, and the passenger volume was greatly affected by the COVID-19 pandemic. The findings of this research can serve as a reference for Taipei MRT Corporation in formulating its fare strategy and can also provide guidance for the Taipei and New Taipei City Governments in evaluating differential pricing policies for public transportation systems.Keywords: frequent user discount program, mass rapid transit, monthly ticket, smart card
Procedia PDF Downloads 83356 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale
Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya
Abstract:
Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS
Procedia PDF Downloads 201355 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking
Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya
Abstract:
Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate
Procedia PDF Downloads 323354 Solid State Drive End to End Reliability Prediction, Characterization and Control
Authors: Mohd Azman Abdul Latif, Erwan Basiron
Abstract:
A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control
Procedia PDF Downloads 173353 An Assessment of Involuntary Migration in India: Understanding Issues and Challenges
Authors: Rajni Singh, Rakesh Mishra, Mukunda Upadhyay
Abstract:
India is among the nations born out of partition that led to one of the greatest forced migrations that marked the past century. The Indian subcontinent got partitioned into two nation-states, namely India and Pakistan. This led to an unexampled mass displacement of people accounting for about 20 million in the subcontinent as a whole. This exemplifies the socio-political version of displacement, but there are other identified reasons leading to human displacement viz., natural calamities, development projects and people-trafficking and smuggling. Although forced migrations are rare in incidence, they are mostly region-specific and a very less percentage of population appears to be affected by it. However, when this percentage is transcripted in terms of volume, the real impact created by such migration can be realized. Forced migration is thus an issue related to the lives of many people and requires to be addressed with proper intervention. Forced or involuntary migration decimates peoples' assets while taking from them their most basic resources and makes them migrate without planning and intention. This in most cases proves to be a burden on the destination resources. Thus, the question related to their security concerns arise profoundly with regard to the protection and safeguards to these migrants who need help at the place of destination. This brings the human security dimension of forced migration into picture. The present study is an analysis of a sample of 1501 persons by NSSO in India (National Sample Survey Organisation), which identifies three reasons for forced migration- natural disaster, social/political problem and displacement by development projects. It was observed that, of the total forced migrants, about 4/5th comprised of the internally displaced persons. However, there was a huge inflow of such migrants to the country from across the borders also, the major contributing countries being Bangladesh, Pakistan, Sri Lanka, Gulf countries and Nepal. Among the three reasons for involuntary migration, social and political problem is the most prominent in displacing huge masses of population; it is also the reason where the share of international migrants to that of internally displaced is higher compared to the other two factors /reasons. Second to political and social problems, natural calamities displaced a high portion of the involuntary migrants. The present paper examines the factors which increase people's vulnerability to forced migration. On perusing the background characteristics of the migrants it was seen that those who were economically weak and socially fragile are more susceptible to migration. Therefore, getting an insight about this fragile group of society is required so that government policies can benefit these in the most efficient and targeted manner.Keywords: involuntary migration, displacement, natural disaster, social and political problem
Procedia PDF Downloads 354352 Geochemistry and Petrogenesis of High-K Calc-Alkaline Granitic Rocks of Song, Hawal Massif, N. E. Nigeria
Authors: Ismaila Haruna
Abstract:
The global downfall in fossil energy prices and dwindling oil reserves in Nigeria has ignited interest in the search for alternative sources of foreign income for the country. Solid minerals, particularly Uranium and other base metals like Lead and Zinc have been considered as potentially good options. Several occurrences of this mineral have been discovered in both the sedimentary and granitic rocks of the Hawal and Adamawa Massifs as well as in the adjoining Benue Trough in northeastern Nigeria. However, the paucity of geochemical data and consequent poor petrogenetic knowledge of the granitoids in this region has made exploration works difficult. Song, a small area within the Hawal Massif, was mapped and the collected samples chemically determined in Activation Laboratory, Canada through fusion dissolution technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Field mapping results show that the area is underlain by Granites, diorites with pockets of gneisses and pegmatites and that these rocks consists of microcline, quartz, plagioclase, biotite, hornblende, pyroxene and accessory apatite, zircon, sphene, magnetite and opaques in various proportions. Geochemical data show continous compositional variation from diorite to granites within silica range of 52.69 to 76.04 wt %. Plot of the data on various Harker variation diagrams show distinct evolutionary trends from diorites to granites indicated by decreasing CaO, Fe2O3, MnO, MgO, Ti2O, and increasing K2O with increasing silica. This pattern is reflected in trace elements data which, in general, decrease from diorite to the granites with rising Rb and K. Tectonic, triangular and other diagrams, indicate high-K calc-alkaline trends, syn-collisional granite signatures, I-type characteristics, with CNK/A of less than 1.1 (minimum of 0.58 and maximum of 0.94) and strong potassic character (K2O/Na2O˃1). However, only the granites are slightly peraluminous containing high silica percentage (68.46 to 76.04), K2O (2.71 to 6.16 wt %) with low CaO (1.88 on the average). Chondrite normalised rare earth elements trends indicate strongly fractionated REEs and enriched LREEs with slightly increasing negative Eu anomaly from the diorite to the granite. On the basis of field and geochemical data, the granitoids are interpreted to be high-K calc-alkaline, I-type, formed as a result of hybridization between mantle-derived magma and continental source materials (probably older meta-sediments) in a syn-collisional tectonic setting.Keywords: geochemistry, granite, Hawal Massif, Nigeria, petrogenesis, song
Procedia PDF Downloads 235351 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí
Abstract:
A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding
Procedia PDF Downloads 96350 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement
Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang
Abstract:
Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement
Procedia PDF Downloads 186349 Interface Designer as Cultural Producer: A Dialectic Materialist Approach to the Role of Visual Designer in the Present Digital Era
Authors: Cagri Baris Kasap
Abstract:
In this study, how interface designers can be viewed as producers of culture in the current era will be interrogated from a critical theory perspective. Walter Benjamin was a German Jewish literary critical theorist who, during 1930s, was engaged in opposing and criticizing the Nazi use of art and media. ‘The Author as Producer’ is an essay that Benjamin has read at the Communist Institute for the Study of Fascism in Paris. In this article, Benjamin relates directly to the dialectics between base and superstructure and argues that authors, normally placed within the superstructure should consider how writing and publishing is production and directly related to the base. Through it, he discusses what it could mean to see author as producer of his own text, as a producer of writing, understood as an ideological construct that rests on the apparatus of production and distribution. So Benjamin concludes that the author must write in ways that relate to the conditions of production, he must do so in order to prepare his readers to become writers and even make this possible for them by engineering an ‘improved apparatus’ and must work toward turning consumers to producers and collaborators. In today’s world, it has become a leading business model within Web 2.0 services of multinational Internet technologies and culture industries like Amazon, Apple and Google, to transform readers, spectators, consumers or users into collaborators and co-producers through platforms such as Facebook, YouTube and Amazon’s CreateSpace Kindle Direct Publishing print-on-demand, e-book and publishing platforms. However, the way this transformation happens is tightly controlled and monitored by combinations of software and hardware. In these global-market monopolies, it has become increasingly difficult to get insight into how one’s writing and collaboration is used, captured, and capitalized as a user of Facebook or Google. In the lens of this study, it could be argued that this criticism could very well be considered by digital producers or even by the mass of collaborators in contemporary social networking software. How do software and design incorporate users and their collaboration? Are they truly empowered, are they put in a position where they are able to understand the apparatus and how their collaboration is part of it? Or has the apparatus become a means against the producers? Thus, when using corporate systems like Google and Facebook, iPhone and Kindle without any control over the means of production, which is closed off by opaque interfaces and licenses that limit our rights of use and ownership, we are already the collaborators that Benjamin calls for. For example, the iPhone and the Kindle combine a specific use of technology to distribute the relations between the ‘authors’ and the ‘prodUsers’ in ways that secure their monopolistic business models by limiting the potential of the technology.Keywords: interface designer, cultural producer, Walter Benjamin, materialist aesthetics, dialectical thinking
Procedia PDF Downloads 142348 Relationship between Different Heart Rate Control Levels and Risk of Heart Failure Rehospitalization in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study
Authors: Yongrong Liu, Xin Tang
Abstract:
Background: Persistent atrial fibrillation is a common arrhythmia closely related to heart failure. Heart rate control is an essential strategy for treating persistent atrial fibrillation. Still, the understanding of the relationship between different heart rate control levels and the risk of heart failure rehospitalization is limited. Objective: The objective of the study is to determine the relationship between different levels of heart rate control in patients with persistent atrial fibrillation and the risk of readmission for heart failure. Methods: We conducted a retrospective dual-centre cohort study, collecting data from patients with persistent atrial fibrillation who received outpatient treatment at two tertiary hospitals in central and western China from March 2019 to March 2020. The collected data included age, gender, body mass index (BMI), medical history, and hospitalization frequency due to heart failure. Patients were divided into three groups based on their heart rate control levels: Group I with a resting heart rate of less than 80 beats per minute, Group II with a resting heart rate between 80 and 100 beats per minute, and Group III with a resting heart rate greater than 100 beats per minute. The readmission rates due to heart failure within one year after discharge were statistically analyzed using propensity score matching in a 1:1 ratio. Differences in readmission rates among the different groups were compared using one-way ANOVA. The impact of varying levels of heart rate control on the risk of readmission for heart failure was assessed using the Cox proportional hazards model. Binary logistic regression analysis was employed to control for potential confounding factors. Results: We enrolled a total of 1136 patients with persistent atrial fibrillation. The results of the one-way ANOVA showed that there were differences in readmission rates among groups exposed to different levels of heart rate control. The readmission rates due to heart failure for each group were as follows: Group I (n=432): 31 (7.17%); Group II (n=387): 11.11%; Group III (n=317): 90 (28.50%) (F=54.3, P<0.001). After performing 1:1 propensity score matching for the different groups, 223 pairs were obtained. Analysis using the Cox proportional hazards model showed that compared to Group I, the risk of readmission for Group II was 1.372 (95% CI: 1.125-1.682, P<0.001), and for Group III was 2.053 (95% CI: 1.006-5.437, P<0.001). Furthermore, binary logistic regression analysis, including variables such as digoxin, hypertension, smoking, coronary heart disease, and chronic obstructive pulmonary disease as independent variables, revealed that coronary heart disease and COPD also had a significant impact on readmission due to heart failure (p<0.001). Conclusion: The correlation between the heart rate control level of patients with persistent atrial fibrillation and the risk of heart failure rehospitalization is positive. Reasonable heart rate control may significantly reduce the risk of heart failure rehospitalization.Keywords: heart rate control levels, heart failure rehospitalization, persistent atrial fibrillation, retrospective cohort study
Procedia PDF Downloads 74347 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards
Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah
Abstract:
Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation
Procedia PDF Downloads 376346 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro
Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill
Abstract:
In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity
Procedia PDF Downloads 292345 Factors Affecting Air Surface Temperature Variations in the Philippines
Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya
Abstract:
Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number
Procedia PDF Downloads 323