Search results for: learning curve
4117 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company
Authors: Shanshan Zhou, Massimo Battaglia
Abstract:
Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.Keywords: community identity, disaster, identity, organizational learning
Procedia PDF Downloads 7374116 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 864115 Comparison of Overall Sensitivity of Meloidogyne incognita to Pure Cucurbitacins and Cucurbitacin-Containing Crude Extracts
Authors: Zakheleni P. Dube, Phatu W. Mashela
Abstract:
The Curve-fitting Allelochemical Response Data (CARD) model had been adopted as a valuable tool in enhancing the understanding of the efficacy of cucurbitacin-containing phytonematicides on the suppression of nematodes. In most cases, for registration purposes, the active ingredients should be in purified form. Evidence in other phytonematicides suggested that purified active ingredients were less effective in suppression of nematodes. The objective of this study was to use CARD model to compare the overall sensitivities of Meloidogyne incognita J2 hatch, mobility and mortality to Nemarioc-AL phytonematicides, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B. Meloidogyne incognita eggs and J2 were exposed to 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50 and 5.00% of each phytonematicide, whereas in purified form the concentrations were 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹. The exposure period to each concentration was 24-, 48- and 72-h. The overall sensitivities of J2 hatch to Nemarioc-AL phytonematicide, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B were 1, 30, 5 and 2 units, respectively, whereas J2 mobiltity were 3, 17, 3 and 6 units, respectively. For J2 mortality overall sensitivities to Nemarioc-AL phytonematicide, cucurbitacin A, Nemafric-BL phytonematicide and cucurbitacin B were 2, 4, 1 and 4 units, respectively. In conclusion, the two crude extracts, Nemarioc-AL and Nemafric-BL phytonematicides were generally more potent to M. incognita compared to their pure active ingredients. The crude plant extract preparation is easy, and they could be an ideal tactic for the management of nematodes in resource poor farming communities.Keywords: Botanicals, cucumin, leptodermin, plant extracts, triterpenoids
Procedia PDF Downloads 2164114 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1804113 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4564112 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 7324111 Evaluation of Technology Tools for Mathematics Instruction by Novice Elementary Teachers
Authors: Christopher J. Johnston
Abstract:
This paper presents the finding of a research study in which novice (first and second year) elementary teachers (grades Kindergarten – six) evaluated various mathematics Virtual Manipulatives, websites, and Applets (tools) for use in mathematics instruction. Participants identified the criteria they used for evaluating these types of resources and provided recommendations for or against five pre-selected tools. During the study, participants participated in three data collection activities: (1) A brief Likert-scale survey which gathered information about their attitudes toward technology use; (2) An identification of criteria for evaluating technology tools; and (3) A review of five pre-selected technology tools in light of their self-identified criteria. Data were analyzed qualitatively using four theoretical categories (codes): Software Features (41%), Mathematics (26%), Learning (22%), and Motivation (11%). These four theoretical categories were then grouped into two broad categories: Content and Instruction (Mathematics and Learning), and Surface Features (Software Features and Motivation). These combined, broad categories suggest novice teachers place roughly the same weight on pedagogical features as they do technological features. Implications for mathematics teacher educators are discussed, and suggestions for future research are provided.Keywords: mathematics education, novice teachers, technology, virtual manipulatives
Procedia PDF Downloads 1414110 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI
Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan
Abstract:
The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).Keywords: fundus image, exudates, microaneurisms, hemorrhages, tortuosity, diabetic retinopathy, optic disc, fovea
Procedia PDF Downloads 3464109 Effects of Gamification on Lower Secondary School Students’ Motivation and Engagement
Authors: Goh Yung Hong, Mona Masood
Abstract:
This paper explores the effects of gamification on lower secondary school students’ motivation and engagement in the classroom. Two-group posttest-only experimental design were employed to study the influence of gamification teaching method (GTM) when compared with conventional teaching method (CTM) on 60 lower secondary school students. The Student Engagement Instrument (SEI) and Intrinsic Motivation Inventory (IMI) were used to assess students’ intrinsic motivation and engagement level towards the respective teaching method. Finding indicates that students who completed the GTM lesson were significantly higher in intrinsic motivation to learn than those from the CTM. Although the result were insignificant and only marginal difference in the engagement mean, GTM still show better potential in raising student’s engagement in class when compared with CTM. This finding proves that the GTM is likely to solve the current issue of low motivation to learn and low engagement in class among lower secondary school students in Malaysia. On the other hand, despite being not significant, higher mean indicates that CTM positively contribute to higher peer support for learning and better teacher and student relationship when compared with GTM. As a conclusion, gamification approach is flexible and can be adapted into many learning content to enhance the intrinsic motivation to learn and to some extent, encourage better student engagement in class.Keywords: conventional teaching method, gamification teaching method, motivation, engagement
Procedia PDF Downloads 5304108 Effectiveness of the Model in the Development of Teaching Materials for Malay Language in Primary Schools in Singapore
Authors: Salha Mohamed Hussain
Abstract:
As part of the review on the Malay Language curriculum and pedagogy in Singapore conducted in 2010, some recommendations were made to nurture active learners who are able to use the Malay Language efficiently in their daily lives. In response to the review, a new Malay Language teaching and learning package for primary school, called CEKAP (Cungkil – Elicit; Eksplorasi – Exploration; Komunikasi – Communication; Aplikasi – Application; Penilaian – Assessment), was developed from 2012 and implemented for Primary 1 in all primary schools from 2015. Resources developed in this package include the text book, activity book, teacher’s guide, big books, small readers, picture cards, flash cards, a game kit and Information and Communication Technology (ICT) resources. The development of the CEKAP package is continuous until 2020. This paper will look at a model incorporated in the development of the teaching materials in the new Malay Language Curriculum for Primary Schools and the rationale for each phase of development to ensure that the resources meet the needs of every pupil in the teaching and learning of Malay Language in the primary schools. This paper will also focus on the preliminary findings of the effectiveness of the model based on the feedback given by members of the working and steering committees. These members are academicians and educators who were appointed by the Ministry of Education to provide professional input on the soundness of pedagogical approach proposed in the revised syllabus and to make recommendations on the content of the new instructional materials. Quantitative data is derived from the interviews held with these members to gather their input on the model. Preliminary findings showed that the members provided positive feedback on the model and that the comprehensive process has helped to develop good and effective instructional materials for the schools. Some recommendations were also gathered from the interview sessions. This research hopes to provide useful information to those involved in the planning of materials development for teaching and learning.Keywords: Malay language, materials development, model, primary school
Procedia PDF Downloads 1154107 A Paradigm Shift into the Primary Teacher Education Program in Bangladesh
Authors: Happy Kumar Das, Md. Shahriar Shafiq
Abstract:
This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach
Procedia PDF Downloads 2194106 Digital Learning and Entrepreneurship Education: Changing Paradigms
Authors: Shivangi Agrawal, Hsiu-I Ting
Abstract:
Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g., online entrepreneurship education courses and programs) and other digital tools (e.g., digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19
Procedia PDF Downloads 2714105 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 2114104 Short-Term Operation Planning for Energy Management of Exhibition Hall
Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.Keywords: exhibition hall, energy management, predictive model, simulation-based optimization
Procedia PDF Downloads 3414103 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 354102 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder
Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka
Abstract:
The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.Keywords: cytokine, saliva, attention deficit hyperactivity disorder, child
Procedia PDF Downloads 1474101 Surface Enhanced Raman Substrate Detection on the Structure of γ-Aminobutyric Acid(GABA) Connected with Modified Gold-Chitosan Nanoparticles by Mercaptopropionic Acid (MPA)
Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). As for the gold-chitosan nanoshell, it is made by using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) for the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. When the system formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced Raman scattering
Procedia PDF Downloads 2684100 Fragility Assessment for Vertically Irregular Buildings with Soft Storey
Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi
Abstract:
Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.Keywords: special steel moment frame, soft storey, incremental dynamic analysis, fragility curve
Procedia PDF Downloads 3534099 Effecting the Unaffected Through the Effervescent Disk Theory, a Different Perspective of Media Effective Theories
Authors: Tarik Elaujali
Abstract:
This study examines a new media effective theory was developed by the author, it is called ‘The Effervescent Disk Theory’ (EDT). The theory main goal is to affect the unaffected audience who are either not exposing to a particular message or do not show interest in it. EDT suggest melting down messages that means to be affected within the media materials which are selected willingly by the audience themselves. A certain set of procedures to test EDT hypotheses were taken and illustrated in this study. A sample of 342 respondents (males & females) was collected from Tripoli University in Libya during the academic year 2013-2014. The designated sample is representing students who were failing to pass the English module for beginners’. This study aims to change the students’ negative notion about the importance of learning English, and to put their new idea into action. The theory seeks to affect audience cognition, emotions, and behaviors. EDT was applied in the present study alongside the media dependency theory. EDT hypotheses were confirmed, study results denoted that 73.6 percentage of the students responded positively and passed their English exam for beginners after being exposed selectively to their favorite TV program that contains a dissolved messages about the importance and vitality of learning English language.Keywords: effervescent disk theory, selective exposure, media dependency, Libyan students
Procedia PDF Downloads 2484098 L2 Anxiety, Proficiency, and L2 Willingness to Communicate in the Classroom, Outside the Classroom, and in Digital Setting: Insights from Ethiopian Preparatory Schools
Authors: Merih Welay Welesilassie, Marianne Nikolov
Abstract:
Research into second and foreign language (L2) acquisitions has demonstrated that L2 anxiety, perceived proficiency, and L2 willingness to communicate (L2WTC) profoundly impact language learning outcomes. However, the complex interplay between these variables has yet to be fully explored, as these factors are dynamic and context-specific and can vary across different learners and learning environments. This study, therefore, utilized a cross-sectional quantitative survey research design to scrutinise the causal relationships between L2 anxiety, English proficiency, and L2WTC of 609 Ethiopian preparatory school students. The model for the L2WTC, both inside and outside the classroom, has been expanded to include an additional sub-scale known as the L2WTC in a digital setting. Moreover, in contrast to the commonly recognised debilitative-focused L2 anxiety, the construct of L2 anxiety has been divided into facilitative and debilitative anxiety. This method allows to measure not only the presence or absence of anxiety but also evaluate if anxiety helps or hinders the L2 learning experience. A self-assessment proficiency measure was also developed specifically for Ethiopian high school students. The study treated facilitative and debilitative anxiety as independent variables while considering self-assessed English proficiency and L2WTC in the classroom, outside the classroom, and in digital settings as dependent variables. Additionally, self-assessed English proficiency was used as an independent variable to predict L2WTC in these three settings. The proposed model, including these variables, was tested using structural equation modelling (SEM). According to the descriptive analysis, the mean scores of L2WTC in the three settings were generally low, ranging from 2.30 to 2.84. Debilitative anxiety casts a shadow on the positive aspects of anxiety. Self-assessed English proficiency was also too low. According to SEM, debilitative anxiety displayed a statistically significant negative impact on L2WTC inside the classroom, outside the classroom, in digital settings, and in self-assessed levels of English proficiency. In contrast, facilitative anxiety was found to positively contribute to L2WTC outside the classroom, in digital settings, and in self-assessed English proficiency. Self-assessed English proficiency made a statistically significant and positive contribution to L2WTC within the classroom, outside the classroom, and in digital contexts. L2WTC inside the classroom was found to positively contribute to L2WTC outside the classrooms and in digital contexts. The findings were systematically compared with existing studies, and the pedagogical implications, limitations, and potential avenues for future research were elucidated. The outcomes of the study have the potential to significantly contribute to the advancement of theoretical and empirical knowledge about improving English education, learning, and communication not only in Ethiopia but also in similar EFL contexts, thereby providing valuable insights for educators, researchers, and policymakers.Keywords: debilitative anxiety, facilitative anxiety, L2 willingness to communicate, self-assessed English proficiency
Procedia PDF Downloads 194097 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange
Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari
Abstract:
The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution
Procedia PDF Downloads 744096 Blogging vs Paper-and-Pencil Writing: Evidences from an Iranian Academic L2 Setting
Authors: Mehran Memari, Bita Asadi
Abstract:
Second language (L2) classrooms in academic contexts usually consist of learners with diverse L2 proficiency levels. One solution for managing such heterogeneous classes and addressing individual needs of students is to improve learner autonomy by using technological innovations such as blogging. The focus of this study is on investigating the effects of blogging on improving the quality of Iranian university students' writings. For this aim, twenty-six Iranian university students participated in the study. Students in the experimental group (n=13) were required to blog daily while the students in the control group (n=13) were asked to write a daily schedule using paper and pencil. After a 3-month period of instruction, the five last writings of the students from both groups were rated by two experienced raters. Also, students' attitudes toward the traditional method and blogging were surveyed using a questionnaire and a semi-structured interview. The research results showed evidences in favor of the students who used blogging in their writing program. Also, although students in the experimental group found blogging more demanding than the traditional method, they showed an overall positive attitude toward the use of blogging as a way of improving their writing skills. The findings of the study have implications for the incorporation of computer-assisted learning in L2 academic contexts.Keywords: blogging, computer-assisted learning, paper and pencil, writing
Procedia PDF Downloads 4044095 From the Himalayas to Australia: A Review of the Literature on Teaching and Learning with Nepalese Students in the Higher Education Sector
Authors: Sangeeta Rai
Abstract:
International education is Australia’s third largest export with significant revenue flowing to the economy in all state and territory jurisdictions. International students make significant economic, social and cultural contributions to all communities in which they are studying and often working. Among these international students are those from Nepal, who continue to seek Australian higher education in increasing numbers. This paper reports on findings from a literature review that highlights the gap in knowledge of the pedagogical issues that may need addressing in teaching Nepalese students in the higher education sector in Australia. Nepalese students bring to their studies a rich culture shaped by their country’s turbulent political and poor economic conditions. These factors may further contribute to their endeavors to seek education abroad to better themselves and their situation. This cohort of students faces various challenges undertaking their studies in Australia that may be due to factors including language, learning styles and engagement with peers. Hence, this paper highlights the importance of these students on Australian shores and forms the basis for further study on the issues and challenges that they face and those that need to be addressed by Australian educators.Keywords: Nepalese students in Australia, challenges and coping mechanisms of Nepalese students, international students in Australia, socio-cultural background of Nepalese students
Procedia PDF Downloads 2134094 Developing a Framework for Open Source Software Adoption in a Higher Education Institution in Uganda. A case of Kyambogo University
Authors: Kafeero Frank
Abstract:
This study aimed at developing a frame work for open source software adoption in an institution of higher learning in Uganda, with the case of KIU as a study area. There were mainly four research questions based on; individual staff interaction with open source software forum, perceived FOSS characteristics, organizational characteristics and external characteristics as factors that affect open source software adoption. The researcher used causal-correlation research design to study effects of these variables on open source software adoption. A quantitative approach was used in this study with self-administered questionnaire on a purposively and randomly sampled sample of university ICT staff. Resultant data was analyzed using means, correlation coefficients and multivariate multiple regression analysis as statistical tools. The study reveals that individual staff interaction with open source software forum and perceived FOSS characteristics were the primary factors that significantly affect FOSS adoption while organizational and external factors were secondary with no significant effect but significant correlation to open source software adoption. It was concluded that for effective open source software adoption to occur there must be more effort on primary factors with subsequent reinforcement of secondary factors to fulfill the primary factors and adoption of open source software. Lastly recommendations were made in line with conclusions for coming up with Kyambogo University frame work for open source software adoption in institutions of higher learning. Areas of further research recommended include; Stakeholders’ analysis of open source software adoption in Uganda; Challenges and way forward. Evaluation of Kyambogo University frame work for open source software adoption in institutions of higher learning. Framework development for cloud computing adoption in Ugandan universities. Framework for FOSS development in Uganda IT industryKeywords: open source software., organisational characteristics, external characteristics, cloud computing adoption
Procedia PDF Downloads 764093 The Use of Online Multimedia Platforms to Deliver a Regional Medical Schools Finals Revision Course During the COVID-19 Pandemic
Authors: Matthew Edmunds, Andrew Hunter, Clare Littlewood, Wisha Gul, Gabriel Heppenstall-Harris, Thomas Humphries
Abstract:
Background: Revision courses for medical students undertaking their final examinations are commonplace throughout the UK. Traditionally these take the form of a series of lectures over multiple weeks or a single day of intensive lectures. The COVID-19 pandemic, however, has required medical educators to create new teaching formats to ensure they adhere to social distancing requirements. It has provided an unexpected opportunity to accelerate the development of students proficiency in the use of ‘technology-enabled communication platforms’, as mandated in the 2018 GMC Outcomes of Graduates. Recent advances in technology have made distance learning possible, whilst also providing novel and more engaging learning opportunities for students. Foundation Year 2 doctors at Aintree University Hospital developed an online series of videos to help prepare medical students in the North West and byond for their final medical school examinations. Method: Eight hour-long videos covering the key topics in medicine and surgery were posted on the Peer Learning Liverpool Youtube channel. These videos were created using new technology such as the screen and audio recording platform, Loom. Each video compromised at least 20 single best answer (SBA) questions, in keeping with the format in most medical school finals. Explanations of the answers were provided, and additional important material was covered. Students were able to ask questions by commenting on the videos, with the authors replying as soon as possible. Feedback was collated using an online Google form. Results: An average of 327 people viewed each video, with 113 students filling in the feedback form. 65.5% of respondents were within one month of their final medical school examinations. The average rating for how well prepared the students felt for their finals was 6.21/10 prior to the course and 8.01/10 after the course. A paired t-test demonstrated a mean increase of 1.80 (95% CI 1.66-1.93). Overall, 98.2% said the online format worked well or very well, and 99.1% would recommend the course to a peer. Conclusions: Based on the feedback received, the online revision course was successful both in terms of preparing students for their final examinations, and with regards to how well the online format worked. Free-text qualitative feedback highlighted advantages such as; students could learn at their own pace, revisit key concepts important to them, and practice exam style questions via the case-based format. Limitations identified included inconsistent audiovisual quality, and requests for a live online Q&A session following the conclusion of the course. This course will be relaunched later in the year with increased opportunities for students to access live feedback. The success of this online course has shown the roll that technology can play in medical education. As well as providing novel teaching modes, online learning allows students to access resources that otherwise would not be available locally, and ensure that they do not miss out on teaching that was previously provided face to face, in the current climate of social distancing.Keywords: COVID-19 pandemic, Medical School, Online learning, Revision course
Procedia PDF Downloads 1584092 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning
Procedia PDF Downloads 3254091 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction
Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin
Abstract:
Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria
Procedia PDF Downloads 994090 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 944089 Treatment of Psoriasis through Thai Traditional Medicine
Authors: Boonsri Lertviriyachit
Abstract:
The objective of this research is to investigate the treatment of psoriasis through Thai traditional medicine in the selected areas of 2 east coast provinces; Samudprakarn Province and Chantaburi Province. The informants in this study were two famous and accepted Thai traditional doctors, who have more than 20 year experiences. Data were collected by in depth interviews and participant-observation method. The research instrument included unstructured interviews, camera, and cassette tape to collect data analyzed by descriptive statistics. The results revealed that the 2 Thai traditional doctors were 54 and 85 years old with 25 and 45 years of treatment experiences. The knowledge of Thai traditional medicine was transferred from generations to generations in the family. The learning process was through close observation as an apprentice with the experience ones and assisted them in collecting herbs and learning by handling real case in individual situations. Before being doctors, they had to take exam to get the Thai traditional medical certificate. Knowledge of being Thai traditional doctors included diagnosis and find to the suitable way of treatment. They have to look into disorder physical fundamental factors such as blood circulation, lymph, emotion, and food consumption habit. It is important that the treatment needs to focus on balancing the fundamental factors and to observe contraindication.Keywords: Thai traditional medicine, psoriasis, Samudprakarn Province, Chantaburi Province
Procedia PDF Downloads 3684088 The Stereotypes of Female Roles in TV Drama of Taiwan and Japan
Authors: Ya Ting Tang
Abstract:
Social learning theory has told us that the cognitions of gender roles come from learning. Thus, the images of gender roles which media describes will shape our cognitions. Taiwan and Japan are both in the East Asian cultural Sphere, and more or less influenced by the traditional Chinese culture. But our social structure and changes must be different. Others, the study also concerns that, with the rise of female consciousness in society, whether the female stereotype in drama of Taiwan and Japan are improved. This research first uses content analysis to analyze drama of Taiwan and Japan in 2003 and 2013 on how to shape female roles. Then use text analysis to conduct a qualitative analysis. Result of this study showed that drama on how to depict women indeed have changed, women are no longer just talk about love, but can serve as president or doctor, and show its mettle in the workplace. In Japanese drama, the female roles have diverse occupation than Taiwanese drama, and not just a background character set. But in most Taiwanese drama, female roles are given a career, but it always put emphasis on women emotionally. To include, although the stereotype in the drama of Taiwan and Japan are improved, female will still be derided due to their ages, love or marriage situations. Taiwanese drama must depict the occupation of female more diverse and let the female roles have more space to play, rather than focusing on romance which women of any occupation can have.Keywords: female images, stereotype, TV drama, gender roles
Procedia PDF Downloads 284