Search results for: open source data
25991 CNC Milling-Drilling Machine Cutting Tool Holder
Authors: Hasan Al Dabbas
Abstract:
In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.Keywords: drilling, milling, chucks, cutting edges, tools, machines
Procedia PDF Downloads 57225990 Analysis of the Demographic Variable Associated with Common Pregnancy Related Illnesses among Pregnant Mothers in Anambra
Authors: Nkiru Nnaemezie, J. O. Okafor
Abstract:
The high mortality as a result of pregnancy related illnesses is a global public health problem and a source of concern to most countries including Nigeria. This study was therefore designed to determine the Demographic Variables associated with common pregnancy related illnesses among pregnant mothers in Awka South Local Government Area of Anambra State. The design of the study was an expost-facto research design. All the folders of the pregnant mothers that were studied from 2010-2014 formed the population of the study which included 10,250 folders. Based on the content of the folders, a researcher developed pro-forma (RDP) was used for data collection. Five research questions and five hypotheses were postulated for the study. Research questions postulated were answered using simple percentage. Hypotheses stated were analyzed at 0.05 level of significance using chi-square (X²) statistics. The result among others showed that pregnant mothers within 15-29 years had the most pregnancy related illnesses than mothers on other age brackets. Pregnant mothers with 0-1 parity level experienced the most pregnancy related illnesses than mothers on other parity levels. Public servants experienced the most pregnancy related illnesses than mothers in other occupations. Married pregnant mothers experienced the most pregnancy related illnesses than single mothers. Pregnant mothers with secondary education had the most pregnancy related illnesses than mothers in other education levels. There were significant differences in the common pregnancy related illnesses among the pregnant mothers of the study in relation to the demographic variables of the study which included age, parity, occupation, marital status and educational level. Based on the findings, conclusions were drawn, and the following recommendations among others were made: there is need for health education in terms of educating those pregnant mothers during antenatal clinics; single mothers should be advised to register for antenatal early enough.Keywords: analysis, demographic variables, pregnancy related illnesses, pregnant mothers
Procedia PDF Downloads 25825989 City Buses and Sustainable Urban Mobility in Kano Metropolis 1967-2015: An Historical Perspective
Authors: Yusuf Umar Madugu
Abstract:
Since its creation in 1967, Kano has tremendously undergone political, social and economic transformations. Public urban transportation has been playing a vital role in sustaining economic growth of Kano metropolis, especially with the existence of modern buses with the regular network of roads, in all the main centers of trade. This study, therefore, centers on the role of intra-city buses in molding the economy of Kano. Its main focus is post-colonial Kano (i.e. 1967-2015), a period that witnessed rapid expansion of commercial activities and ever increasing urbanization which goes along with it population explosion. The commuters patronized the urban transport, a situation that made the business lucrative. More so, the traders who had come from within and outside Kano relied heavily on commercial vehicles to transport their merchandise to their various destinations. Commercial road transport system, therefore, had become well organized in Kano with a significant number of people earning their means of livelihood from it. It also serves as a source of revenue to governments at different levels. However, the study of transport and development as an academic discipline is inter-disciplinary in nature. This study, therefore, employs the services and the methodologies of other disciplines such as Geography, History, Urban and Regional Planning, Engineering, Computer Science, Economics, etc. to provide a comprehensive picture of the issues under investigation. The source materials for this study included extensive use of written literature and oral information. In view of the crucial importance of intra-city commercial transport services, this study demonstrates its role in the overall economic transformation of the study area. It generally also, contributed in opening up a new ground and looked into the history of commercial transport system. At present, Kano Metropolitan area is located between latitude 110 50’ and 12007’, and longitude 80 22’ and 80 47’ within the Semi-Arid Sudan Savannah Zone of West Africa about 840kilometers of the edge of the Sahara desert. The Metropolitan area has expanded over the years and has become the third largest conurbation in Nigeria with a population of about 4million. It is made up of eight local government areas viz: Kano Municipal, Gwale, Dala, Tarauni, Nasarawa, Fage, Ungogo, and Kumbotso.Keywords: assessment, buses, city, mobility, sustainable
Procedia PDF Downloads 22325988 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design
Authors: Sebastian Kehne, Alexander Epple, Werner Herfs
Abstract:
A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design
Procedia PDF Downloads 28625987 Cooperative CDD scheme Based on Adaptive Modulation in Wireless Communiation System
Authors: Seung-Jun Yu, Hwan-Jun Choi, Hyoung-Kyu Song
Abstract:
Among spatial diversity scheme, orthogonal space-time block code (OSTBC) and cyclic delay diversity (CDD) have been widely studied for the cooperative wireless relaying system. However, conventional OSTBC and CDD cannot cope with change in the number of relays owing to low throughput or error performance. In this paper, we propose a cooperative cyclic delay diversity (CDD) scheme that use hierarchical modulation at the source and adaptive modulation based on cyclic redundancy check (CRC) code at the relays.Keywords: adaptive modulation, cooperative communication, CDD, OSTBC
Procedia PDF Downloads 43125986 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 8425985 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 26325984 A Framework for Protecting Teenagers from Cyber Crimes and Cyberbullying
Authors: Sultan Alanazi, Adwan Alanazi
Abstract:
Social applications consist of powerful tools that allow people to connect and interact with each other. However, its negative use cannot be ignored. Cyberbullying is a new and serious Internet problem. Cyberbullying is one of the most common risks for teenagers to go online. More than half of young people report that they do not tell their parents when this will occur, which can have significant physiological consequences. Cyberbullying involves the deliberate use of digital media on the Internet to convey false or embarrassing information about others. Therefore, this article provides a way to detect cyber-bullying in social media applications for parents. The purpose of our work is to develop an architectural model for identifying and measuring the state of Cyberbullying faced by children on social media applications. For parents, this will be a good tool for monitoring their children without invading their privacy. Finally, some interesting open-ended questions were raised, suggesting promising ideas for starting new research in this new field.Keywords: cyberbullying, cyber bullying, internet crimes, social media security, E-crimes
Procedia PDF Downloads 13825983 Share Pledging and Financial Constraints in China
Authors: Zijian Cheng, Frank Liu, Yupu Sun
Abstract:
The relationship between the intensity of share pledging activities and the level of financial constraint in publicly listed firms in China is examined in this paper. Empirical results show that the high financial constraint level may motivate insiders to use share pledging as an alternative funding source and an expropriation mechanism. Share collateralization can cause a subsequently more constrained financing condition. Evidence is found that share pledging made by the controlling shareholder is likely to mitigate financial constraints in the following year. Research findings are robust to alternative measures and an instrumental variable for dealing with endogeneity problems.Keywords: share pledge, financial constraint, controlling shareholder, dividend policy
Procedia PDF Downloads 16525982 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 7525981 Women as Catalysts for the Rehabilitation of the Traditional System of Governance in Nigeria
Authors: Inalegwu Stephany Akipu
Abstract:
Before the advent of Colonialists on the shores of Nigeria between the 16th and 17th Centuries, there existed the traditional systems of governance which was successful with Women as active participants. However, the current state of politics in Nigeria reveals an obvious absence of women in the Country’s governance. Being that the economy rests on the quality of leaders and their constructive contribution to the plight of the masses, it becomes pertinent to exhaust all the avenues that may be open to good governance-women inclusive. It is against this backdrop that this paper attempts to compare the machinery that were in place in pre-colonial Nigerian governance that aided the womenfolk to successfully reign or assist in leadership with the seeming lack of interest by women in present times. Factors that militate against the women will also be highlighted. Furthermore, suggestions are made on how to revive these successful traditional systems of governance. The paper concludes by emphasising the role of women as the needed catalysts for this aforementioned rehabilitation of traditional systems and the impact of media in achieving this feat.Keywords: catalysts, governance, media, rehabilitation
Procedia PDF Downloads 41925980 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 18925979 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 17525978 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 18625977 Searchable Encryption in Cloud Storage
Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu
Abstract:
Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption
Procedia PDF Downloads 38325976 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 14325975 Using Large Databases and Interviews to Explore the Temporal Phases of Technology-Based Entrepreneurial Ecosystems
Authors: Elsie L. Echeverri-Carroll
Abstract:
Entrepreneurial ecosystems have become an important concept to explain the birth and sustainability of technology-based entrepreneurship within regions. However, as a theoretical concept, the temporal evolution of entrepreneurship systems remain underdeveloped, making it difficult to understand their dynamic contributions to entrepreneurs. This paper argues that successful technology-based ecosystems go over three cumulative spawning stages: corporate spawning, entrepreneurial spawning, and community spawning. The importance of corporate incubation in vibrant entrepreneurial ecosystems is well documented in the entrepreneurial literature. Similarly, entrepreneurial spawning processes for venture capital-backed startups are well documented in the financial literature. In contrast, there is little understanding of both the third stage of entrepreneurial spawning (when a community of entrepreneurs become a source of firm spawning) and the temporal sequence in which spawning effects occur in a region. We test this three-stage model of entrepreneurial spawning using data from two large databases on firm births—the Secretary of State (160,000 observations) and the National Establishment Time Series (NEST with 150,000 observations)—and information collected from 60 1½-hour interviews with startup founders and representatives of key entrepreneurial organizations. This temporal model is illustrated with case study of Austin, Texas ranked by the Kauffman Foundation as the number one entrepreneurial city in the United States in 2015 and 2016. The 1½-year study founded by the Kauffman Foundation demonstrates the importance of taken into consideration the temporal contributions of both large and entrepreneurial firms in understanding the factors that contribute to the birth and growth of technology-based entrepreneurial regions. More important, these learnings could offer an important road map for regions that pursue to advance their entrepreneurial ecosystems.Keywords: entrepreneurial ecosystems, entrepreneurial industrial clusters, high-technology, temporal changes
Procedia PDF Downloads 27225974 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria
Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi
Abstract:
The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.Keywords: CRU, climate change, precipitation, SPI, temperature
Procedia PDF Downloads 8925973 Problem, Policy and Polity in Agenda Setting: Analyzing Safe Motherhood Program in India
Authors: Vanita Singh
Abstract:
In developing countries, there are conflicting political agendas; policy makers have to prioritize issues from a list of issues competing for the limited resources. Thus, it is imperative to understand how some issues gain attention, and others lose in the policy circles. Multiple-Streams Theory of Kingdon (1984) is among the influential theories that help to understand the public policy process and is utilitarian for health policy makers to understand how certain health issues emerge on the policy agendas. The issue of maternal mortality was long standing in India and was linked with high birth rate thus the focus of maternal health policy was on family planning since India’s independence. However, a paradigm shift was noted in the maternal health policy in the year 1992 with the launch of Safe Motherhood Programme and then in the year 2005, when the agenda of maternal health policy became universalizing institutional deliveries and phasing-out of Traditional Birth Attendants (TBAs) from the health system. There were many solutions proposed by policy communities other than universalizing of institutional deliveries, including training of TBAs and improving socio-economic conditions of pregnant women. However, Government of India favored medical community, which was advocating for the policy of universalizing institutional delivery, and neglected the solutions proposed by other policy communities. It took almost 15 years for the advocates of institutional delivery to transform their proposed solution into a program - the Janani Suraksha Yojana (JSY), a safe-motherhood program promoting institutional delivery through cash incentives to pregnant women. Thus, the case of safe motherhood policy in India is worth studying to understand how certain issues/problems gain political attention and how advocacy work in policy circles. This paper attempts to understand the factors that favored the agenda of safe-motherhood in the policy circle in India, using John Kingdon’s Multiple-Stream model of agenda-setting. Through document analysis and literature review, the paper traces the evolution of safe motherhood program and maternal health policy. The study has used open source documents available on the website of Ministry of Health and Family Welfare, media reports (Times of India Archive) and related research papers. The documents analyzed include National health policy-1983, National Health Policy-2002, written reports of Ministry of Health and Family Welfare Department, National Rural Health Mission (NRHM) document, documents related to Janani Suraksha Yojana and research articles related to maternal health programme in India. The study finds that focusing events and credible indicators coupled with media attention has the potential to recognize a problem. The political elites favor clearly defined and well-accepted solutions. The trans-national organizations affect the agenda-setting process in a country through conditional resource provision. The closely-knit policy communities and political entrepreneurship are required for advocating solutions high on agendas. The study has implications for health policy makers in identifying factors that have the potential to affect the agenda-setting process for a desired policy agenda and identify the challenges in generating political priorities.Keywords: agenda-setting, focusing events, Kingdon’s model, safe motherhood program India
Procedia PDF Downloads 14725972 Blind Data Hiding Technique Using Interpolation of Subsampled Images
Authors: Singara Singh Kasana, Pankaj Garg
Abstract:
In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.Keywords: interpolation, image subsampling, PSNR, SIM
Procedia PDF Downloads 57825971 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving
Authors: Samane Sharifi Monfared, Lavdie Rada
Abstract:
Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing
Procedia PDF Downloads 9425970 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument
Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki
Abstract:
According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test
Procedia PDF Downloads 30225969 Use of Electrochemical Methods for the Inhibition of Scaling with Green Products
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
The municipality of Constantine in eastern Algeria draws water from the Hamma groundwater source. The high fouling capacity is due to the high content of bicarbonate (442 mg/L) and calcium (136 mg/L). This work focuses on the use of three new green inhibitors for reducing calcium carbonate scale formation: gallic acid, quercetin and alginate, and on the comparison between them. These inhibitors have proven to be green antiscalants because they have no impact on the environment. Electrochemical methods (chronoamperometry and impedancemetry) were used to evaluate their performance. According to the study, these inhibitors are excellent green chemical inhibitors of scaling, and the best inhibitor is quercetin because it gave a good result with a lower concentration (2mg/L) compared to others inhibitors.Keywords: scaling, green inhibitor, chronoamperometry, impedancemetry
Procedia PDF Downloads 11625968 On or Off-Line: Dilemmas in Using Online Teaching-Learning in In-Service Teacher Education
Authors: Orly Sela
Abstract:
The lecture discusses a Language Teaching program in a Teacher Education College in northern Israel. An on-line course was added to the program in order to keep on-campus attendance at a minimum, thus allowing the students to keep their full-time jobs in school. In addition, the use of educational technology to allow students to study anytime anywhere, in keeping with 21st-century innovative teaching-learning practices, was also an issue, as was the wish for this course to serve as a model which the students could then possibly use in their K-12 teaching. On the other hand, there were strong considerations against including an online course in the program. The students in the program were mostly Israeli-Arab married women with young children, living in a traditional society which places a strong emphasis on the place of the woman as a wife, mother, and home-maker. In addition, as teachers, they used much of their free time on school-related tasks. Having careers at the same time as studying was ground-breaking for these women, and using their time at home for studying rather than taking care of their families may have been simply too much to ask of them. At the end of the course, feedback was collected through an online questionnaire including both open and closed questions. The data collected shows that the students believed in online teaching-learning in principle, but had trouble implementing it in practice. This evidence raised the question of whether or not such a course should be included in a graduate program for mature, professional students, particular women with families living in a traditional society. This issue is not relevant to Israel alone, but also to academic institutions worldwide serving such populations. The lecture discusses this issue, sharing the researcher’s conclusions with the audience. Based on the evidence offered, it is the researcher’s conclusion that online education should, indeed, be offered to such audiences. However, the courses should be designed with the students’ special needs in mind, with emphasis placed on initial planning and course organization based on acknowledgment of the teaching context; modeling of online teaching/learning suited for in-service teacher education, and special attention paid to social-constructivist aspects of learning.Keywords: course design, in-service teacher-education, mature students, online teaching/learning
Procedia PDF Downloads 23225967 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean
Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou
Abstract:
This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning
Procedia PDF Downloads 33425966 Active Contours for Image Segmentation Based on Complex Domain Approach
Authors: Sajid Hussain
Abstract:
The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.Keywords: image segmentation, active contour, level set, Mumford and Shah model
Procedia PDF Downloads 11425965 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 15725964 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9525963 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36325962 Comparative Rumen Degradable and Rumen Undegradable Fractions in Untreated, Formaldehyde and Heat Treated Vegetable Protein Sources of Pakistan
Authors: Illahi Bakhsh Marghazani, Nasrullah, Masood Ul Haq Kakar, Abdul Hameed Baloch, Ahmad Nawaz Khoso, Behram Chacher
Abstract:
Protein sources are the major part of ration fed to dairy buffaloes in Pakistan however, the limited availability and lack of judicious use of protein resources are further aggravating the conditions to enhance milk and meat production. In order to gain maximum production from limited protein source availability, it is necessary to balance feed for rumen degradable and rumen undegradable protein fractions. This study planned to know the rumen degradable and rumen undegradable fractions in all vegetable protein sources with (formaldehyde and heat treatment) and without treatments. Samples of soybean meal, corn gluten meal 60%, maize gluten feed, guar meal, sunflower meal, rapeseed meal, rapeseed cake, canola meal, cottonseed cake, cottonseed meal, coconut cake, coconut meal, palm kernel cake, almond cake and sesame cake were collected from ten different geographical locations of Pakistan. These samples were also subjected to formaldehyde (1% /100g CP of test feed) and heat treatments (1 hr at 15 lb psi/100 g CP of test feed). In situ technique was used to know the ruminal degradability characteristics. Data obtained were fitted to Orskove equation. Results showed that both treatments significantly (P < 0.05) decreased ruminal degradability in all vegetable protein sources than untreated vegetable protein sources, however, of both treatments, heat treatment was more effective than formaldehyde treatment in decreasing ruminal degradability in most of the studied vegetable protein sources.Keywords: formaldehyde and heat treatments, in situ technique, rumen degradable and rumen undegradable fractions, vegetable protein sources
Procedia PDF Downloads 334