Search results for: learning physical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12782

Search results for: learning physical

8702 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 178
8701 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 322
8700 The ‘Othered’ Body: Deafness and Disability in Nina Raine’s Tribes

Authors: Nurten Çelik

Abstract:

Under the new developments in science, medicine, sociology, psychology and literary theories, body studies has gained huge importance and the body has become a debatable issue. There has emerged, among sociologists and literary theorists, an overwhelming consensus that body is socially, politically and culturally perceived and constructed and thus, the position of an individual in the society is determined in accordance with his/her body image. In this regard, the most complicated point is the theoretical views propounded upon disability studies, where the disabled body is considered to be a site upon which social and political restrictions as well as repressions are inscribed. There has been the widely-accepted view that no matter what kind of disability it is, those with physical, mental or learning impairments face varied social, political and environmental obstacles that prevent them from being an active citizen, worker, lover and even a family member. In parallel with these approaches, the matter of the sufferings of disabled individuals attains its place in cinema and literature as well as in theatre studies under the category of disability theatre. One of the prominent plays that deal with physical disability came from the contemporary British playwright Nina Raine. In her awarded play Tribes, which premiered at the Royal Court Theatre in 2010, Raine develops the social strata where her deaf protagonist, Billy, caught up between two tribes – namely his family and his lover Slyvia, a member of the deaf community– experiences personal and social hardships due to his hearing impairment. In the play, intransigent and self-opinionated family members foster no sense of empathy towards Billy, there are noisy talking and shouting, but no communication, love, compassion or mutual understanding, and language becomes just a tool for the expression of rage and oppression. In the disordered atmosphere of the family life, Billy experiences isolation and loneliness. Billy’s hopes for success and love are destroyed when Slyvia, troubled between hearing and deafness, rejects him because she does not utterly grasp what Billy is experiencing. Drawing upon the hardships, Billy undergoes in his relationships with his family and his girlfriend, Tribes problematizes the concept of deafness and explores to what extent a deaf person can find a place in the hearing world. Setting ‘the disabled’ bodies against ‘the abled’ bodies in a family, a microcosm of the society where bodies are socially shaped and constructed, Tribes dramatizes how the disabled bodies are disenfranchised, stigmatised, marginalized and othered on the grounds that they are socially misfit. Tribes, with a specific focus on the dysfunctional family, shows that the lack of communication and empathy numbs the characters to the feelings of each other and thereby, they become more disabled than Billy. In conclusion, this paper, with the reference to the embodiment of disability and social theories, aims to explore how disabled bodies are socially marked and segregated from family and society.

Keywords: body, deafness, disability, disability theatre, Nina Raine, tribes

Procedia PDF Downloads 264
8699 A Qualitative Study of the Efficacy of Teaching for Conceptual Understanding to Enhance Confidence and Engagement in Early Mathematics

Authors: Nigel P. Coutts, Stellina Z. Sim

Abstract:

Research suggests that the pedagogy we utilize when teaching mathematics contributes to a negative attitude towards the discipline. Worried by this, we have explored teaching mathematics for understanding, fluency, and confidence. We investigated strategies to engage students with the beauty of mathematics, moving them beyond mimicry and memorization. The result is an integrated pedagogy and curriculum arrangement which combines concept-based mathematics with Number Talks, Visible Thinking Routines, and Teaching for Understanding. Our qualitative research shows that students self-report greater self-confidence and heightened engagement with mathematical thinking. Teacher reflections on student learning echo this finding. As a result of this, we advocate for teacher training in the implementation of a concept-based curriculum supplemented with Number Talk strategies.

Keywords: mathematical thinking, teaching for understanding, student confidence, concept-based learning, engagement

Procedia PDF Downloads 156
8698 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 220
8697 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts

Authors: Yuxi Zhu, Zhenqian Chen

Abstract:

It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.

Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential

Procedia PDF Downloads 30
8696 Difficulties Posed by Disability on the Acquisition of Higher Education in Inclusive Setting by Physically Challenged Students

Authors: G. Fatima, R. Bashir, M. Saeed Akhtar, M. Malik, M. Safder, D. Nayab

Abstract:

The main purpose of this quantitative study was to investigate challenges and difficulties being encountered by physically challenged students in inclusive settings at higher education level. A self-developed and validated questionnaire (Cronbach alpha: 0.879) was employed for data collected from a sample of fifty six (56) graduate and continuing students with physical disabilities (males:46, females:10) selected through snow ball sampling technique from colleges and universities of Pakistan. The participants were required to respond on three point criteria (no, to some extent, yes). Data were analyzed by using SPSS. Independent sample t-test and One Way Analysis of Variance (ANOVA) was run to compare mean scores of responses of physically challenged students on the basis of their gender, education, types of physical disability, types of institutions, provinces, and status. Frequencies were run to have an overall picture of challenges faced by physically challenged students. Major findings reflected that physically challenged students were encountering problems in transportation, accessibility, and financial support, etc. Conclusions were drawn and recommendations were made.

Keywords: physically challenged students, inclusive setting, higher education, accessibility

Procedia PDF Downloads 413
8695 Common Health Problems of Filipino Overseas Household Service Workers: Implications for Wellness

Authors: Veronica Ramirez

Abstract:

For over 40 years now, the Philippines has been supplying Household Service Workers (HSWs) globally. As a requirement of the Philippine Overseas Employment Agency (POEA), all Filipinos applying for overseas work undergo medical examination and a certificate of good health is submitted to the foreign employer before hiring. However, there are workplace-related health problems that develop during employment such as musculoskeletal strain or injury, back pain, hypertension and other illnesses. Some workers are in good working conditions but are on call more than 12 hours per day. There are also those who experience heavy physical work with short rest periods or time off. They can also be easily exposed to disease outbreaks and epidemics. It was the objective of this study to determine the common health problems of Filipino Overseas Service Workers and analyze their implications to wellness in the workplace. Specifically, it sought to describe the work conditions of HSWs and determine the work-related factors affecting their health. It also identified the medical care they avail of and how they perceive their health and wellness as determinants of well-being. Finally, it proposes ways to promote wellness among HSWs. This study focused on physical illnesses and does not include mental problems experienced by HSWs. Using a questionnaire, primary data were gathered online and through survey of HSW rehires who were retaking Pre-Departure Orientation Seminar at recruitment agencies. The 2010 Health Benefit Availment data from the Overseas Workers Welfare Administration (OWWA) was also utilized. Descriptive analysis was employed on the data gathered. Key stakeholders in the migration industry were also interviewed. Previous research studies, reports and literature on migration and wellness were used as secondary data. The study found that Filipino overseas HSWs are vulnerable to physical injury and experience body pains such as back, hip and shoulder pain. Long hours of work, work hazards and lack of rest due to poor accommodations can aggravate their physical condition. Although health insurance and health care are available, HSWs are not aware how to avail them. On the basis of the findings, a Wellness Program can be designed that include health awareness, health care availment, occupational ergonomics, safety and health, work and leisure balance, developing emotional intelligence, anger management and spirituality.

Keywords: health, household service worker, overseas, wellness

Procedia PDF Downloads 261
8694 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report

Authors: Hualter Oliveira Barbosa, Raquel Feitosa do Vale Cunha, Erika Muniz dos Santos, Fernanda Belmira Souza, Fabio Sousa, Luis Henrique Pascareli, Franciney de Oliveira Lima, Ana Cláudia Reis da Silva, Christiane Moreira de Almeida

Abstract:

Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. For this reason, several approaches have been proposed to minimize barriers caused by geographic distance. In this paper, we present as we use experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki and; facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.

Keywords: mobile product, knowledge transfer, knowledge management process, wiki, GSD

Procedia PDF Downloads 180
8693 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study

Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan

Abstract:

Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.

Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study

Procedia PDF Downloads 172
8692 Making Use of Content and Language Integrated Learning for Teaching Entrepreneurship and Neuromarketing to Master Students: Case Study

Authors: Svetlana Polskaya

Abstract:

The study deals with the issue of using the Content and Language Integrated Learning (CLIL) concept when teaching Master Program students majoring in neuromarketing and entrepreneurship. Present-day employers expect young graduates to conduct professional communication with their English-speaking peers and demonstrate proper knowledge of the industry’s terminology and jargon. The idea of applying CLIL was the result of the above-mentioned students possessing high proficiency in English, thus, not requiring any further knowledge of the English language in terms of traditional grammar or lexis. Due to this situation, a CLIL-type program was devised, allowing learners to acquire new knowledge of entrepreneurship and neuromarketing spheres combined with simultaneous honing their English language practical usage. The case study analyzes CLIL application within this particular program as well as the experience accumulated in the process.

Keywords: CLIL, entrepreneurship, neuromarketing, foreign language acquisition, proficiency level

Procedia PDF Downloads 95
8691 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 133
8690 The Development of Digital Commerce in Community Enterprise Products to Promote the Distribution of Samut Songkhram Province

Authors: Natcha Wattanaprapa, Alongkorn Taengtong, Phachaya Chaiwchan

Abstract:

This study investigates and promotes the distribution of community enterprise products of Samut Songkhram province by using e-commerce web technology to help distribute the products. This study also aims to develop the information system to be able to operate on multiple platforms and promote the easy usability on smartphones to increase the efficiency and promote the distribution of community enterprise products of Samut Songkhram province in three areas including Baan Saraphi learning center, the learning center of Bang Noi Floating market as well as Bang Nang Li learning center. The main structure consists of spreading the knowledge regarding the tourist attraction in the area of community enterprise, e-commerce system of community enterprise products, and Chatbot. The researcher developed the system into an application form using the software package to create and manage the content on the internet. Connect management system (CMS) word press was used for managing web pages. Add-on CMS word press was used for creating the system of Chatbot, and the database of PHP My Admin was used as the database management system. The evaluation by the experts and users in 5 aspects, including the system efficiency, the accuracy in the operation of the system, the convenience and ease of use of the system, the design, and the promotion of product distribution in Samut Songkhram province by using questionnaires revealed that the result of evaluation in the promotion of product distribution in Samut Songkhram province was the highest with the mean of 4.20. When evaluating the efficiency of the developed system, it was found that the result of system efficiency was the highest level with a mean of 4.10.

Keywords: community enterprise, digital commerce, promotion of product distribution, Samut Songkhram province

Procedia PDF Downloads 151
8689 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society

Authors: Azusa Katsumata

Abstract:

Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.

Keywords: career education of university, excursion, learning platform, problems of society

Procedia PDF Downloads 263
8688 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects

Authors: E. Maoz

Abstract:

Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.

Keywords: evidence based nursing, critical thinking skills, project based learning, students education

Procedia PDF Downloads 92
8687 Students’ Perceptions on Educational Game for Learning Programming Subject: A Case Study

Authors: Roslina Ibrahim, Azizah Jaafar, Khalili Khalil

Abstract:

Educational games (EG) are regarded as a promising teaching and learning tool for the new generation. Growing number of studies and literatures can be found in EG studies. Both academic researchers and commercial developers come out with various educational games prototypes and titles. Despite that, acceptance of educational games still lacks among the students. It is important to understanding students’ perceptions of EG, since they are the main stakeholder of the technology. Thus, this study seeks to understand perceptions of undergraduates’ students using a framework originated from user acceptance theory. The framework consists of six constructs with twenty-eight items. Data collection was done on 180 undergraduate students of Universiti Teknologi Malaysia, Kuala Lumpur using self-developed online EG called ROBO-C. Data analysis was done using descriptive, factor analysis and correlations. Performance expectancy, effort expectancy, attitude, and enjoyment factors were found significantly correlated with the intention to use EG. This study provides more understanding towards the use of educational games among students.

Keywords: educational games, perceptions, acceptance, UTAUT

Procedia PDF Downloads 414
8686 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 85
8685 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, suitability, Zea mays

Procedia PDF Downloads 397
8684 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission

Authors: Parisa Javid

Abstract:

In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.

Keywords: modern lighting systems, natural light, reduced energy consumption

Procedia PDF Downloads 103
8683 Return to Work Rates of Participants in Medical Rehabilitation: The Role of Fitness and Health

Authors: Julius Steinkopf, Eric Rost, Aike Hessel, Sonia Lippke

Abstract:

Objective: This study examined possible determinants of return to work (RTW) in individuals who participated in a medical rehabilitation program longitudinally over a time period of six months. Design/methodology/approach: N=1,044 rehabilitants were included in the baseline measurement in terms of completing a questionnaire during their medical rehabilitation. About 30% (n=350) have remained in the study in terms of participating in computer-assisted telephone interviewing (CATI) six months later. Frequency analyses and Regression analyses were run. Findings: About 70% of the rehabilitants returned to work six months after rehabilitation. Regression analyses revealed that the RTW rates were significantly predicted by gender (OR=0.12, men were more likely to return), perceived social support (OR=3.01) and current physical functioning (OR=1.25). Furthermore RTW motives, like expected monetary rewards (OR=25.2) and feelings of being needed (OR=0.18) same as motives for not returning to work (nRTW), like the wish to stop working in order to spend time with the spouse (OR=0.13) or a lack of enjoyment of work (OR=3.81), significantly predicted return to work rates. Life satisfaction, self-efficacy beliefs, mental health, current income, educational background or age did not significantly increase explained variance (all ps > .05). Practical implications: Taking theses predictors into account provides options to increase the effectiveness of interventions aiming at increasing RTW: Medical rehabilitations should not only aim at improving the physical functioning but also to enhance beneficial motives and social support as well as support women specifically in order to improve the effectiveness of medical rehabilitation and public health interventions. Originality/value: Illness-caused work absences are related to high financial costs and individual burden. Despite of the public health and societal implications, this is one of the very few studies investigating systematically fitness and health for the return to work.

Keywords: gender, fitness, health, physical functioning

Procedia PDF Downloads 239
8682 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 65
8681 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 69
8680 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom

Authors: Phalaunnnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: multiple intelligences, role play, performance assessment, formative assessment

Procedia PDF Downloads 277
8679 The Impact of Exercise on Osteoporosis and Body Composition in Individuals with Mild Intellectual Disabilities

Authors: Hisham Mughrabi

Abstract:

Osteoporosis is one of the most common diseases in the world and, its seriousness lies in the lack of clear symptoms. The researcher aims to identify the impact of sports activities on osteoporosis and the body component of those with mild intellectual disabilities of students in the schools in Saudi Arabia -Medina. The research sample was selected in an intentional manner and consisted of 45 students and they were divided into two groups. The first group consisted of 23 individuals participate in sports and the second group consisted of 22 individuals does not participate in sports. The researcher used the descriptive method and collected the data by measuring osteoporosis using and ultrasound osteoporosis screening device (OSTEO PRO B.M. Tech) and measured the body composition by using a Tanita devise (Body Composition Analyzer TBF- 300 Tanita). The results indicated that there was a statistical significant difference between the two comparing groups in osteoporosis measurement and body composition for the benefit of the group of sport participants. The researcher recommended the need to involve individuals with mild intellectual disabilities in physical activities to improve their rate of osteoporosis and body composition as well as to develop sports programs for individuals with mild intellectual disabilities.

Keywords: body composition, mild intellectual disabilities, osteoporosis, physical activities

Procedia PDF Downloads 145
8678 Impact of SES and Culture on Well-Being of Adolescent

Authors: Shraddha B. Rai, Mahipatsinh D. Chavda, Bharat S. Trivedi

Abstract:

The aim of the present research is to study the effect of education and social belonging on well-being of youth. Well-being is one of the most important aspects of human being and the state of well-being can be attained in terms of healthy body with healthy mind. Well-being has been defined as encompassing people’s cognitive and affective evaluations of their lives. Well-being has been interchangeably used with health and quality of life. According to the WHO, the main determinants of health include the social, economic, and the physical environment and the persons individual characteristics and behaviors. WHO lists other factors that can influence the well-being of a person such as the gender, education, social support networks and health services. The main objective of the present investigation is to know the effect of education and social belonging on well-being of youth. The sample of 180 students belonging to Gujarati and English (convent) culture were selected randomly from Guajarati and English (convent) schools of Ahmedabad City of Gujarat (India). General well-being Scale by Dr. Ashok Kalia and Ms. Anita Deswal was administered to measure the Physical, Emotional, and Social and school well-being. The result shows that there is significant different found between Gujarati and English (convent) culture on Well-being in school students. SES is also affect significantly to wellbeing of students.

Keywords: culture, SES, well-being, health, quality of life

Procedia PDF Downloads 528
8677 Jointly Learning Python Programming and Analytic Geometry

Authors: Cristina-Maria Păcurar

Abstract:

The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.

Keywords: analytic geometry, conics, python, quadrics

Procedia PDF Downloads 299
8676 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 189
8675 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 177
8674 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 273
8673 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 79