Search results for: learning difficulty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7928

Search results for: learning difficulty

3848 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 114
3847 Endangered Languages in Arabia: Documentation Challenges

Authors: Munira Al-Azraqi

Abstract:

Modern South Arabian Languages (MSAL) belong to the Semitic language family and are believed to be either a southern member of the west Semitic branch (Rubin 2010; Moscati et al 1969) or an eastern member of the south Semitic branch (Faber 1997), (Watson 2012). They are six languages which are still spoken in southern Arabia. They are used in Oman, Yemen, Saudi Arabia and in some of the Gulf states. Mehri is one of them however it has the highest number of speakers comparing to the other members of MSAL. It is used in Yemen, Oman, in parts of southern and eastern Saudi Arabia and in some of the Gulf states. The number of Mehri speakers is estimated at between 100,000 and 180,000. The problem that this language might face is that its speakers live in different places which are belonging to different countries. This might cause the language to change rapidly due to education and communication. There are some studies on Omani and Yemeni Mehri but not in Saudi Mehri. In the nineteenth century, travelers, western scholars and explorers played their parts in the discovery of these peoples and their languages. The historical turning point for the knowledge of the MSAL is 1898, when the Südarabische Expedition of the Imperial Academy of Vienna started. The three scholars, Müller, Jahn and Hein began their systematic collection of texts, which were later studied grammatically and lexically by Bittner (1908-1917), Jahn (1915), Leslau (1938) and Wagner (1953). Saudi Mehri has not been studied. This might be caused by the lack of information or the difficulty in collecting the data which this paper aims to shed light on.

Keywords: Modern South Arabian, Mehri, Saudi Arabia, endangered languages

Procedia PDF Downloads 526
3846 A Qualitative Examination of the Impact of COVID-19 on the Wellbeing of Undergraduate Students in Ontario

Authors: Soumya Mishra, Elena Neiterman

Abstract:

Aligned with the growing interest in the impact of the pandemic on academic experiences of university students, this study aimed to examine the challenges Canadian undergraduate students experienced during the university closures due to COVID-19. Using qualitative methodological approach, the study utilized semi-structured interviews conducted with 20 undergraduate students enrolled in an Ontario university to explore their thoughts and experience regarding online learning during the peak of the COVID-19 pandemic, from January 2021 to March 2021. The interviews yielded four major themes with the following associated subthemes: Personal Challenges Associated with Adapting to the Pandemic (Change in the Type of Stress Experienced, Unique Impact on Certain Groups of Students, Decreased Motivation, Crucial Role of Resilience), Social Challenges Associated with Adapting to the Pandemic (Increased Loneliness, Challenges Faced while Communicating, Perception of Group work, Role of Living Conditions), Challenges associated with Accessing University Resources (Crucial Role of Professors, Perception of Virtual Events, Importance of Physical Spaces). Overall, the analysis showed that the COVID-19 pandemic fostered resilience and psychological flexibility amongst all students. However, the mental health and social wellbeing of students deteriorated during the COVID-19 pandemic and they reported experiencing chronic stress, anxiety and loneliness. International students, first year and final year students experienced a unique set of challenges. It was hard for participants in our study to make strong new connections with their classmates and maintain existing friendships with their peers. The importance of professors in facilitating learning was amplified in the online environment due to the lack of in-person interaction with other students. Despite these challenges, most participants reported that they received high grades during online learning. The findings from this study could be helpful for organizations and individuals working towards fostering the wellbeing of undergraduate students. They can also help in making post-secondary institutions more resilient to future emergencies by creating contingency plans regarding online instructions and risk management techniques.

Keywords: Canadian, COVID-19, university students, wellbeing

Procedia PDF Downloads 104
3845 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse

Authors: Isaac Benning

Abstract:

Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar Sub-Saharan African countries.

Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion

Procedia PDF Downloads 135
3844 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 123
3843 Mealtime Talk as a Context of Learning: A Multiple Case Study of Australian Chinese Parents' Interaction with Their Preschool Aged Children at Dinner Table

Authors: Jiangbo Hu, Frances Hoyte, Haiquan Huang

Abstract:

Research identifies that mealtime talk can be a significant learning context that provides children with rich experiences to foster their language and cognitive development. Middle-classed parents create an extended learning discourse for their children through sophisticated vocabulary, narrative and explanation genres at dinner table. However, mealtime opportunities vary with some parents having little interaction with their children and some parents focusing on directive of children’s behaviors. This study investigated five Chinese families’ parent-child interaction during mealtime that was rarely reported in the literature. The five families differ in terms of their living styles. Three families are from professional background where both mothers the fathers work in Australian companies and both of them present at dinner time. The other two families own business. The mothers are housemakers and the fathers are always absent at dinner time due to their busy business life. Employing case study method, the five Chinese families’ parent-child interactions at dinner table were recorded using a video camera. More than 3000 clauses were analyzed with the framework of 'systems of clause complexing' from systemic functional linguistic theory. The finding shows that mothers played a critical role in the interaction with their children by initiating most conversations. The three mothers from professional background tended to use more language in extending and expanding pattern that is beneficial for children’s language development and high level of thinking (e.g., logical thinking). The two house making mothers’ language focused more on the directive of their children’s social manners and dietary behaviors. The fathers though seemed to be less active, contributing to the richness of the conversation through their occasional props such as asking open questions or initiating a new topic. In general, the families from professional background were more advantaged in providing learning opportunities for their children at dinner table than the families running business were. The home experiences of Chinese children is an important topic in research due to the rapidly increasing number of Chinese children in Australia and other English speaking countries. Such research assist educators in the education of Chinese children with more awareness of Chinese children experiences at home that could be very unlike the settings in English schools. This study contributes to the research in this area through the analysis of language in parent-child interaction during mealtime, which is very different from previous research that mainly investigated Chinese families through survey and interview. The finding of different manners in language use between the professional families and business families has implication for the understanding of the variation of Chinese children’s home experiences that is influenced not only by parents’ socioeconomic status but their lifestyles.

Keywords: Chinese children, Chinese parents, mealtime talk, parent-child interaction

Procedia PDF Downloads 235
3842 Children's Literature with Mathematical Dialogue for Teaching Mathematics at Elementary Level: An Exploratory First Phase about Students’ Difficulties and Teachers’ Needs in Third and Fourth Grade

Authors: Goulet Marie-Pier, Voyer Dominic, Simoneau Victoria

Abstract:

In a previous research project (2011-2019) funded by the Quebec Ministry of Education, an educational approach was developed based on the teaching and learning of place value through children's literature. Subsequently, the effect of this approach on the conceptual understanding of the concept among first graders (6-7 years old) was studied. The current project aims to create a series of children's literature to help older elementary school students (8-10 years old) in developing a conceptual understanding of complex mathematical concepts taught at their grade level rather than a more typical procedural understanding. Knowing that there are no educational material or children's books that exist to achieve our goals, four stories, accompanied by mathematical activities, will be created to support students, and their teachers, in the learning and teaching of mathematical concepts that can be challenging within their mathematic curriculum. The stories will also introduce a mathematical dialogue into the characters' discourse with the aim to address various mathematical foundations for which there are often erroneous statements among students and occasionally among teachers. In other words, the stories aim to empower students seeking a real understanding of difficult mathematical concepts, as well as teachers seeking a way to teach these difficult concepts in a way that goes beyond memorizing rules and procedures. In order to choose the concepts that will be part of the stories, it is essential to understand the current landscape regarding the main difficulties experienced by students in third and fourth grade (8-10 years old) and their teacher’s needs. From this perspective, the preliminary phase of the study, as discussed in the presentation, will provide critical insight into the mathematical concepts with which the target grade levels struggle the most. From this data, the research team will select the concepts and develop their stories in the second phase of the study. Two questions are preliminary to the implementation of our approach, namely (1) what mathematical concepts are considered the most “difficult to teach” by teachers in the third and fourth grades? and (2) according to teachers, what are the main difficulties encountered by their students in numeracy? Self-administered online questionnaires using the SimpleSondage software will be sent to all third and fourth-grade teachers in nine school service centers in the Quebec region, representing approximately 300 schools. The data that will be collected in the fall of 2022 will be used to compare the difficulties identified by the teachers with those prevalent in the scientific literature. Considering that this ensures consistency between the proposed approach and the true needs of the educational community, this preliminary phase is essential to the relevance of the rest of the project. It is also an essential first step in achieving the two ultimate goals of the research project, improving the learning of elementary school students in numeracy, and contributing to the professional development of elementary school teachers.

Keywords: children’s literature, conceptual understanding, elementary school, learning and teaching, mathematics

Procedia PDF Downloads 93
3841 From Paper to the Ether: The Innovative and Historical Development of Distance Education from Correspondence to On-Line Learning and Teaching in Queensland Universities over the past Century

Authors: B. Adcock, H. van Rensburg

Abstract:

Education is ever-changing to keep up with innovative technological development and the rapid acceleration of globalisation. This chapter introduces the historical development and transformation of teaching in distance education from correspondence to on-line learning in Queensland universities. It furthermore investigates changes to the delivery models of distance education that have impacted on teaching at tertiary level in Queensland, and reflects on the social changes that have taken place during the past 100 years. This includes an analysis of the following five different periods in time: Foundation period (1911-1919) including World War I; 1920-1939 including the Great Depression; 1940-1970s, including World War II and the post war reconstruction; and the current technological era (1980s to present). In Queensland, the concept of distance education was begun by the University of Queensland (UQ) in 1911, when it began offering extension courses. The introduction of modern technology, in the form of electronic delivery, dramatically changed tertiary distance education due to political initiatives. The inclusion of electronic delivery in education signifies change at many levels, including policy, pedagogy, curriculum and governance. Changes in delivery not only affect the way study materials are delivered, but also the way courses are be taught and adjustments made by academics to their teaching methods.

Keywords: distance education, innovative technological development, on line education, tertiary education

Procedia PDF Downloads 507
3840 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities

Authors: Carly Cummings, Maria Soledad Peresin

Abstract:

Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.

Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education

Procedia PDF Downloads 71
3839 De-Learning Language at Preschool: A Case of Nepal

Authors: Meenakshi Dahal

Abstract:

Generally, children start verbal communication by the age of eighteen months. Though they have difficulties in constructing complete sentences, they try to make their thought s understandable to the audience. By the age of 36 months, when they enroll in preschool, their Language and communication skills are enhanced. Children need plenty of classroom experiences that will help them to develop their oral language skills. Oral language is the primary means through which each individual child is enabled to structure, evaluate, describe and to express his/her experiences. In the context of multi lingual and multi-cultural country like Nepal, the languages used in preschool and the communities vary. In such a case, the language of instruction in the preschool is different from the language used by the children to communicate at home. Using qualitative research method the socio-cultural aspect of the language learning has been analyzed. This has been done by analyzing and exploring preschool activities as well as the language of instruction and communication in the preschools in rural Nepal. It is found that the language of instruction is different from the language of communications primarily used by the children. Teachers seldom use local language resulting in difficulties for the children to understand. Instead of recognizing their linguistic, social and cultural capitals teachers conform to using the Nepali language which the children are not familiar with. Children have to adapt to new language structures and patterns of usage resulting them to be slow in oral language and communication in the preschool. The paper concludes that teachers have to recognize the linguistic capitals of the children and schools need to be responsible to facilitate this process for all children, whatever their language background.

Keywords: children, language, preschool, socio-culture

Procedia PDF Downloads 397
3838 Effect of Simulation on Anxiety and Knowledge among Novice Nursing Students

Authors: Suja Karkada, Jayanthi Radhakrishnan, Jansi Natarajan, Gerald, Amandu Matua, Sujatha Shanmugasundaram

Abstract:

Simulation-based learning is an educational strategy designed to simulate actual clinical situations in a safe environment. Globally, simulation is recognized by several landmark studies as an effective teaching-learning method. A systematic review of the literature on simulation revealed simulation as a useful strategy in creating a learning environment which contributes to knowledge, skills, safety, and confidence. However, to the best of the author's knowledge, there are no studies on assessing the anxiety of the students undergoing simulation. Hence the researchers undertook a study with the aim to evaluate the effectiveness of simulation on anxiety and knowledge among novice nursing students. This quasi-experimental study had a total sample of 69 students (35- Intervention group with simulation and 34- Control group with case scenario) consisting of all the students enrolled in the Fundamentals of Nursing Laboratory course during Spring 2016 and Fall 2016 semesters at a college of nursing in Oman. Ethical clearance was obtained from the Institutional Review Board (IRB) of the college of nursing. Informed consent was obtained from every participant. Study received the Dean’s fund for research. The data were collected regarding the demographic information, knowledge and anxiety levels before and after the use of simulation and case scenario for the procedure nasogastric tube feeding in intervention and control group respectively. The intervention was performed by four faculties who were the core team members of the course. Results were analyzed in SPSS using descriptive and inferential statistics. Majority of the students’ in intervention (82.9%) and control (89.9%) groups were equal to or below the age of 20 years, were females (71%), 76.8% of them were from rural areas and 65.2% had a GPA of more than 2.5. The selection of the samples to either the experimental or the control group was from a homogenous population (p > 0.05). There was a significant reduction of anxiety among the students of control group (t (67) = 2.418, p = 0.018) comparing to the experimental group, indicating that simulation creates anxiety among Novice nursing students. However, there was no significant difference in the mean scores of knowledge. In conclusion, the study was useful in that it will help the investigators better understand the implications of using simulation in teaching skills to novice students. Since previous studies with students indicate better knowledge acquisition; this study revealed that simulation can increase anxiety among novice students possibly it is the first time they are introduced to this method of teaching.

Keywords: anxiety, knowledge, novice students, simulation

Procedia PDF Downloads 160
3837 Collocation Errors in English as Second Language (ESL) Essay Writing

Authors: Fatima Muhammad Shitu

Abstract:

In language learning, Second language learners like their native speaker counter parts, commit errors in their attempt to achieve competence in the target language. The realm of Collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co -occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co – occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocational errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyse their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified number of occurrences were converted accordingly in percentages. The findings from the study indicates that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocational errors are attributable to poor teaching and learning which resulted in wrong generalisation of rules.

Keywords: collocations, errors, second language learning, ESL students

Procedia PDF Downloads 335
3836 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 110
3835 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 304
3834 Teaching Gender and Language in the EFL Classroom in the Arab World: Algerian Students’ Awareness of Their Gender Identities from New Perspectives

Authors: Amina Babou

Abstract:

Gender and language is a moot and miscellaneous arena in the sphere of sociolinguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. And the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.

Keywords: gender identities, EFL students, classroom discourse, linguistics

Procedia PDF Downloads 416
3833 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms

Authors: Ahmad E. Aldousaria, Abdulla Al Kafy

Abstract:

Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.

Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing

Procedia PDF Downloads 230
3832 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 23
3831 The Impact of Corporate Social Responsibility on Tertiary Institutions in Bauchi State Nigeria

Authors: Aliyu Aminu Baba, Mustapha Makama

Abstract:

Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, these institutions are solely financed by the government alone. As stakeholders of society, corporations have to have to intervene and provide corporate social responsibility. The study intends to investigate the role of Entrepreneurs in incorporating social Responsibility. Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, the study intends to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and Entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State. Corporate social responsibility is vital in enhancing the infrastructural development of the tertiary institution as almost all individuals and corporate bodies benefit from this tertiary institutions. The study intends to examine the impact of corporate social responsibility to tertiary institutions and entrepreneurs in Bauchi state Nigeria. Questionnaires would be distributed to tertiary institutions and entrepreneurs in the Bauchi metropolis. The data collected will be analyzed with the help of SPSS version 23. The main objective is to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State.

Keywords: corporate social responsibility, tertiary, institutions, profitability

Procedia PDF Downloads 232
3830 The Impact of Perception of Transformational Leadership and Factors of Innovation Culture on Innovative Work Behavior in Junior High School's Teacher

Authors: Galih Mediana

Abstract:

Boarding school can helps students to turn all good qualities into habits. The process of forming one's personality can be done in various ways. In addition to gaining general knowledge at school during learning hours, teachers can instill values in students which can be done while in the dormitory when the learning process has ended. This shows the important role that must be played by boarding school’s teachers. Transformational leadership and a culture of innovation are things that can instill innovative behavior in teachers. This study aims to determine the effect of perceptions of transformational leadership and a culture of innovation on innovative work behavior among Islamic boarding school teachers. Respondents in this study amounted to 70 teachers. To measure transformational leadership, a modified measuring tool is used, namely the Multifactor Leadership Questionnaire (MLQ) by Bass (1985). To measure innovative work behavior, a measurement tool based on dimensions from Janssen (2000) is used. The innovation culture in this study will be measured using the innovation culture factor from Dobni (2008). This study uses multiple regression analysis to test the hypothesis. The results of this study indicate that there is an influence of perceptions of transformational leadership and innovation culture factors on innovative work behavior in Islamic boarding school’s teachers by 57.7%.

Keywords: transformational leadership, innovative work behavior, innovation culture, boarding school, teacher

Procedia PDF Downloads 116
3829 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children

Authors: Marina Fuertes

Abstract:

Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.

Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction

Procedia PDF Downloads 329
3828 English for Specific Purposes: Its Definition, Characteristics, and the Role of Needs Analysis

Authors: Karima Tayaa, Amina Bouaziz

Abstract:

The rapid expansion in the scientific fields and the growth of communication technology increased the use of English as international language in the world. Hence, over the past few decades, many researchers have been emphasizing on how the teaching and learning of English as a foreign or as an additional language can best help students to perform successfully. English for specific purpose is today quite literally regarded as the most global language discipline which existed practically in every country in the world. ESP (English for Specific Purposes) involves teaching and learning the specific skills and language needed by particular learners for a particular purpose. The P in ESP is always a professional purpose which is a set of skills that learners currently need in their work or will need in their professional careers. It has had an early origin since 1960’s and has grown to become one of the most prominent of English language teaching today. Moreover, ESP learners are usually adults who have some quittances with English and learn the language so as to communicate and perform particular profession. Related activities are based on specific purposes and needs. They are integrated into subject matter area important to the learners. Unlike general English which focuses on teaching general language courses and all four language skills are equally stressed, ESP and practically needs analysis determine which language skills are the most needed by the learners and syllabus designed accordingly. This paper looked into the origin, characteristics, development of ESP, the difference between ESP and general English. Finally, the paper critically reviews the role of needs analysis in the ESP.

Keywords: English language teaching, English for general purposes, English for specific purposes, needs analysis

Procedia PDF Downloads 410
3827 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 292
3826 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 78
3825 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 198
3824 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration

Authors: Chi-Chang Lin, Jiun-Yan Chiu

Abstract:

Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.

Keywords: bone tissue, gellan gum, regeneration, toughness

Procedia PDF Downloads 147
3823 Academia as Creator of Emerging, Innovative Communities of Practice and Learning

Authors: Francisco Julio Batle Lorente

Abstract:

The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.

Keywords: social innovation, new roles of academia, community of learning, community of practice

Procedia PDF Downloads 86
3822 Automation of AAA Game Development Using AI

Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 31
3821 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 179
3820 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 145
3819 Error Analysis: Examining Written Errors of English as a Second Language (ESL) Spanish Speaking Learners

Authors: Maria Torres

Abstract:

After the acknowledgment of contrastive analysis, Pit Coder’s establishment of error analysis revolutionized the way instructors analyze and examine students’ writing errors. One question that relates to error analysis with speakers of a first language, in this case, Spanish, who are learning a second language (English), is the type of errors that these learners make along with the causes of these errors. Many studies have looked at the way the native tongue influences second language acquisition, but this method does not take into account other possible sources of students’ errors. This paper examines writing samples from an advanced ESL class whose first language is Spanish at non-profit organization, Learning Quest Stanislaus Literacy Center. Through error analysis, errors in the students’ writing were identified, described, and classified. The purpose of this paper was to discover the type and origin of their errors which generated appropriate treatments. The results in this paper show that the most frequent errors in the advanced ESL students’ writing pertain to interlanguage and a small percentage from an intralanguage source. Lastly, the least type of errors were ones that originate from negative transfer. The results further solidify the idea that there are other errors and sources of errors to account for rather than solely focusing on the difference between the students’ mother and target language. This presentation will bring to light some strategies and techniques that address the issues found in this research. Taking into account the amount of error pertaining to interlanguage, an ESL teacher should provide metalinguistic awareness of the students’ errors.

Keywords: error analysis, ESL, interlanguage, intralangauge

Procedia PDF Downloads 299