Search results for: language error
1571 Evolution of Pop Art Pattern on Modern Ao Dai
Authors: Mai Anh Pham Ho
Abstract:
Ao Dai is the traditional dress of Vietnamese women that consists of a long tunic with slits on either side and wide trousers. This is the Vietnamese national costume which most common worn by women in daily life. The Vietnamese men may wear Ao Dai on special occasions like New Year Eve or Wedding Ceremony. Ao Dai is one of the few Vietnamese words that appear in English language dictionaries. Nowadays, there are variations in modern Ao Dai that consist of a short tunic on knee and slim trousers with the other materials like kaki or jeans. This paper aims to apply Pop art pattern on modern Ao Dai through the image of Vietnamese women by modifying the creation process of fashion design. It reflects on how modern culture is involved in Ao Dai and how it affects on fashion design. The research method of this paper is done through surveying the various examples of technological applications to fashion design, then the pop art pattern with the image of Vietnamese women is applied on modern Ao Dai. The results of this paper have shown through the collection of modern Ao Dai with three artworks applied the pop art pattern. In conclusion, the role of fashion technology supports and evolves the traditional value in order to establish the Vietnamese national personality as well as distinguish to other cultural values in the world.Keywords: pop art pattern, Vietnamese national costume, modern ao dai, fashion design
Procedia PDF Downloads 2851570 Modern Seismic Design Approach for Buildings with Hysteretic Dampers
Authors: Vanessa A. Segovia, Sonia E. Ruiz
Abstract:
The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers
Procedia PDF Downloads 4871569 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills
Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu
Abstract:
This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.Keywords: autism, mathematics, technology, family
Procedia PDF Downloads 1081568 Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines
Authors: Aliaa M. Issa, Mahmoud N. ElRouby, Sahar A. S. Ahmad, Mahmoud M. El-Merzabani
Abstract:
Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations.Keywords: antitumor, honey, sider, tumor cell lines
Procedia PDF Downloads 5401567 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 1571566 Manipulation of the Public Sphere to Win Cultural Hegemony: The Process by Which Islamic State Uses the Principles of the Overton Window to Engineer Extremism
Authors: A. Brigitte Coles
Abstract:
In order to be successful in a campaign against terror and maintain a favorable world order, we must recognize the effects of priming, framing, and agenda setting on the public sphere, and address how terrorist organizations are able to manipulate language and symbols to shift public opinion and increase recruitment success. Because of their unprecedented activity in the region and foreign recruitment success, this study specifically addresses how the Islamic State (IS/ISIS/ISIL) manipulates the public sphere to amplify support and increase western recruitment. By following a grounded theory methodology and coding triangulated data from IS propaganda, a model for the process of terrorist recruitment has emerged, concerning both environments and personalities susceptible to recruitment, and the steps by which an extremist can be created. This has resulted in the ability to reverse engineer a method by which counter recruitment operations can be facilitated in an effort to lessen the vulnerability of areas and individuals, as well as create dissent among current extremists.Keywords: countering violent extremism, counter-terrorism, recruitment, overton window
Procedia PDF Downloads 3481565 Exploring a Teaching Method for Elementary Students to Promote Cross-Cultural Understanding: Utilizing an American Film
Authors: Mikako Nobuhara
Abstract:
This study explores the effective methods of nurturing elementary students’ cross-cultural understanding. The delivery lecture was conducted in a private elementary school class for understanding cross-cultural differences through the film E.T. (1982). Interviews of care supporters and students were conducted, as well as student discussions were held after the class. The results were carefully observed and analyzed. Suitable findings were obtained, for instance, students’ listening skills improved; further, they deeply thought about the main character’s feelings after watching the movie. Moreover, their interest in studying English as a foreign language increased. In conclusion, more classes where students can express their opinions in front of the class need to be offered; this would enable the students to nurture their critical thinking abilities and build a sense of accomplishment when they are in elementary school. Utilizing films is one of the best ways to provide students good opportunities to engage in discussions on a specific theme. This is particularly true for elementary school students.Keywords: cross-cultural understanding, English education, elementary schools, films
Procedia PDF Downloads 1681564 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1091563 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater
Authors: Suresh Prasad Sharma, Som Nath Saha
Abstract:
This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.Keywords: corrugated absorber, double flow, flat plate, solar air heater
Procedia PDF Downloads 2871562 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 761561 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning
Authors: Mirza Waseem Abbas, Syed Danish Raza
Abstract:
For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).Keywords: change detection, area estimation, machine learning, urbanization, remote sensing
Procedia PDF Downloads 2551560 Comparison Learning Vocabulary Implicitly and Explicitly
Authors: Akram Hashemi
Abstract:
This study provided an empirical evidence for learners of elementary level of language proficiency to investigate the potential role of contextualization in vocabulary learning. Prior to the main study, pilot study was performed to determine the reliability and validity of the researcher-made pretest and posttest. After manifesting the homogeneity of the participants, the participants (n = 90) were randomly assigned into three equal groups, i.e., two experimental groups and a control group. They were pretested by a vocabulary test, in order to test participants' pre-knowledge of vocabulary. Then, vocabulary instruction was provided through three methods of visual instruction, the use of context and the use of conventional techniques. At the end of the study, all participants took the same posttest in order to assess their vocabulary gain. The results of independent sample t-test indicated that there is a significant difference between learning vocabulary visually and learning vocabulary contextually. The results of paired sample t-test showed that different teaching strategies have significantly different impacts on learners’ vocabulary gains. Also, the contextual strategy was significantly more effective than visual strategy in improving students’ performance in vocabulary test.Keywords: vocabulary instruction, explicit instruction, implicit instruction, strategy
Procedia PDF Downloads 3371559 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 1641558 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 2211557 Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission
Authors: Kazumasa Kawasaki, Isamu Tsuji, Hiroshi Gunbara
Abstract:
A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained.Keywords: alignment error, face gear, gear design, helicopter transmission, tooth contact analysis
Procedia PDF Downloads 4401556 Examining Predictive Coding in the Hierarchy of Visual Perception in the Autism Spectrum Using Fast Periodic Visual Stimulation
Authors: Min L. Stewart, Patrick Johnston
Abstract:
Predictive coding has been proposed as a general explanatory framework for understanding the neural mechanisms of perception. As such, an underweighting of perceptual priors has been hypothesised to underpin a range of differences in inferential and sensory processing in autism spectrum disorders. However, empirical evidence to support this has not been well established. The present study uses an electroencephalography paradigm involving changes of facial identity and person category (actors etc.) to explore how levels of autistic traits (AT) affect predictive coding at multiple stages in the visual processing hierarchy. The study uses a rapid serial presentation of faces, with hierarchically structured sequences involving both periodic and aperiodic repetitions of different stimulus attributes (i.e., person identity and person category) in order to induce contextual expectations relating to these attributes. It investigates two main predictions: (1) significantly larger and late neural responses to change of expected visual sequences in high-relative to low-AT, and (2) significantly reduced neural responses to violations of contextually induced expectation in high- relative to low-AT. Preliminary frequency analysis data comparing high and low-AT show greater and later event-related-potentials (ERPs) in occipitotemporal areas and prefrontal areas in high-AT than in low-AT for periodic changes of facial identity and person category but smaller ERPs over the same areas in response to aperiodic changes of identity and category. The research advances our understanding of how abnormalities in predictive coding might underpin aberrant perceptual experience in autism spectrum. This is the first stage of a research project that will inform clinical practitioners in developing better diagnostic tests and interventions for people with autism.Keywords: hierarchical visual processing, face processing, perceptual hierarchy, prediction error, predictive coding
Procedia PDF Downloads 1121555 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks
Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions
Procedia PDF Downloads 861554 The Use of Video in Increasing Speaking Ability of the First Year Students of SMAN 12 Pekanbaru in the Academic Year 2011/2012
Authors: Elvira Wahyuni
Abstract:
This study is a classroom action research. The general objective of this study was to find out students’ speaking ability through teaching English by using video and to find out the effectiveness of using video in teaching English to improve students’ speaking ability. The subjects of this study were 34 of the first-year students of SMAN 12 Pekanbaru who were learning English as a foreign language (EFL). Students were given pre-test before the treatment and post-test after the treatment. Quantitative data was collected by using speaking test requiring the students to respond to the recorded questions. Qualitative data was collected through observation sheets and field notes. The research finding reveals that there is a significant improvement of the students’ speaking ability through the use of video in speaking class. The qualitative data gave a description and additional information about the learning process done by the students. The research findings indicate that the use of video in teaching and learning is good in increasing learning outcome.Keywords: English teaching, fun learning, speaking ability, video
Procedia PDF Downloads 2601553 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 281552 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 801551 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration
Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef
Abstract:
Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab
Procedia PDF Downloads 3851550 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 3011549 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia
Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui
Abstract:
To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia
Procedia PDF Downloads 2951548 Ways for Improving Citation of the Cyrillic Publications
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Denis G. Yakovlev, Andrei А. Amelenkov, Sergey V. Khudyakov
Abstract:
Assessment of novelty of studies submitted in Russian publications is given by the method citation analysis to identify scientific research with a high degree of innovation. This may be the basis of recommendations for subjects new joint projects setting of the RF and the EU. Apart from not the best rating of Russian publications (may even its lack) current IT ensure open access to the WEB-sites of these journals that make possible own expertise selective rapid assessment of the advanced developments in Russia by interested foreign investors. Cited foreign literature in Russian journals can become the subject of study to determine the innovative attractiveness of scientific research on the background a specific future-proof abroad. Authors introduced: (1) linguistic impact factor Li-f of journals for describing the share of publications in the majority language; (2) linguistic citation index Lact characterizing the significance of scientific research and linguistic top ones Ltop for evaluation of the spectral width of citing of foreign journals.Keywords: citation analysis, linguistic citation indexes, linguistic impact factor, innovative projects
Procedia PDF Downloads 3231547 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality
Authors: Aulia Fitri
Abstract:
This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.Keywords: human translation, machine translation (MT), translation quality, linguistic tool
Procedia PDF Downloads 3281546 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC
Procedia PDF Downloads 2471545 The Loss of Oral Performative Semantic Influence of the Qur'an in Its Translations
Authors: Alalddin Al-Tarawneh
Abstract:
In its literal translation, the Qur’an is frequently subject to misinterpretation as a result of failures to deliver its meaning into any language. This paper relies on the genuine aspect that the Qur’an is an oral performance in its nature; and the objective of any Qur’an translation is to deliver its meaning in English. Therefore, it approaches the translation of the Qur’an beyond the usual formal linguistic approach in order to include an extra-textual factor. This factor is the recitation or oral performance of the Qur’an, that is, tajweed as it is termed in Arabic. The translations used in this paper to apply the suggested approach were carefully chosen to be representative of the problems that exist in many Qur’an translations. These translations are The Meaning of the Holy Quran: Translation and Commentary by Ali (1989), The Meaning of the Glorious Koran by Pickthall (1997/1930), and The Quran: Arabic Text with Corresponding English Meanings by Sahih (2010). Through the examples cited in this paper, it is suggested that the agents involved in producing a ‘translation’ of the Holy Qur’an have to take into account its oral aspect which yields additional senses and meanings that are not being captured by adhering to the words of the ‘written’ discourse. This paper attempts in its translation into English.Keywords: oral performance, tajweed, Qur'an translation, recitation
Procedia PDF Downloads 1521544 Designing and Evaluating Pedagogic Conversational Agents to Teach Children
Authors: Silvia Tamayo-Moreno, Diana Pérez-Marín
Abstract:
In this paper, the possibility of children studying by using an interactive learning technology called Pedagogic Conversational Agent is presented. The main benefit is that the agent is able to adapt the dialogue to each student and to provide automatic feedback. Moreover, according to Math teachers, in many cases students are unable to solve the problems even knowing the procedure to solve them, because they do not understand what they have to do. The hypothesis is that if students are helped to understand what they have to solve, they will be able to do it. Taken that into account, we have started the development of Dr. Roland, an agent to help students understand Math problems following a User-Centered Design methodology. The use of this methodology is proposed, for the first time, to design pedagogic agents to teach any subject from Secondary down to Pre-Primary education. The reason behind proposing a methodology is that while working on this project, we noticed the lack of literature to design and evaluate agents. To cover this gap, we describe how User-Centered Design can be applied, and which usability techniques can be applied to evaluate the agent.Keywords: pedagogic conversational agent, human-computer interaction, user-centered design, natural language interface
Procedia PDF Downloads 3271543 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.Keywords: engineering geology, rock mass classification, rock mechanic, tunnel
Procedia PDF Downloads 851542 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types
Authors: Qianxi Lv, Junying Liang
Abstract:
Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity
Procedia PDF Downloads 187