Search results for: SoC soft error rate
6376 The Bone Remodeling of Mandible in Bruxers
Authors: Eni Rahmi, Rasmi Rikmasari, Taufik Soemarsongko
Abstract:
Background: One of the bad habits that requires a treatment and viewed as a risk factor of the temporomandibular disorder is bruxism. Bruxism defined as an awake and/or asleep parafunctional activities include grinding, gnashing, bracing or clenching of the teeth. In particular circumstances such as an increased frequency of episode, duration and the intensity of masseter contractions, caused phenomenon with pathological consequences, i.e., mandibular remodeling. The remodeling in mandibular angle was associated with the masseter and pterygoid medial muscles attachment which in its insertion area. The aim of this study was to compare the mandibular remodeling between bruxers and non-bruxers with ramus height, gonial angle and bigonial width as parameters, and to identify correlation among those parameters in bruxers, using panoramic radiographic. Methods: This study was conducted on 35 bruxers (10 phasic bruxism patients, 6 tonic bruxism patients, and 19 mixed bruxism patients) and 20 non-bruxers as control group. The data were obtained by using questionary, clinical examination, and radiographic measurement. Panoramic radiograph measurement was done using soft CBCT EPX Impla (E-Woo Korea). The data was analyzed by using Paired T-Test to see differences between parameters in both group and Pearson Correlation Test to evaluate correlation among parameters. Result: There was significant differences between bruxers and non-bruxers in ramus heights (p=0,04), bigonial widths (p=0,001), and gonial angles(p=0,015). The bruxers showed increased ramus heights and bigonial widths, in other hand, the gonial angles decreased. This study also found that there was highly correlation among ramus height, gonial angles, and bigonial widths. Conclusion: the bone remodeling occurred on inferior and posterior border of mandibular angle in bruxism patient, indicated by the form and size differences between bruxers (phasic bruxism, tonic bruxism, and mixed bruxism) with non-bruxers, which shown by panoramic radiograph.Keywords: bruxism, ramus height, gonial angle, bigonial width
Procedia PDF Downloads 3006375 Using Industrial Service Quality to Assess Service Quality Perception in Television Advertisement: A Case Study
Authors: Ana L. Martins, Rita S. Saraiva, João C. Ferreira
Abstract:
Much effort has been placed on the assessment of perceived service quality. Several models can be found in literature, but these are mainly focused on business-to-consumer (B2C) relationships. Literature on how to assess perceived quality in business-to-business (B2B) contexts is scarce both conceptually and in terms of its application. This research aims at filling this gap in literature by applying INDSERV to a case study situation. Under this scope, this research aims at analyzing the adequacy of the proposed assessment tool to other context besides the one where it was developed and by doing so analyzing the perceive quality of the advertisement service provided by a specific television network to its B2B customers. The INDSERV scale was adopted and applied to a sample of 33 clients, via questionnaires adapted to interviews. Data was collected in person or phone. Both quantitative and qualitative data collection was performed. Qualitative data analysis followed content analysis protocol. Quantitative analysis used hypotheses testing. Findings allowed to conclude that the perceived quality of the television service provided by television network is very positive, being the Soft Process Quality the parameter that reveals the highest perceived quality of the service as opposed to Potential Quality. To this end, some comments and suggestions were made by the clients regarding each one of these service quality parameters. Based on the hypotheses testing, it was noticed that only advertisement clients that maintain a connection to the television network from 5 to 10 years do show a significant different perception of the TV advertisement service provided by the company in what the Hard Process Quality parameter is concerned. Through the collected data content analysis, it was possible to obtain the percentage of clients which share the same opinions and suggestions for improvement. Finally, based on one of the four service quality parameter in a B2B context, managerial suggestions were developed aiming at improving the television network advertisement perceived quality service.Keywords: B2B, case study, INDSERV, perceived service quality
Procedia PDF Downloads 2066374 Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach
Authors: Shyaka Eugene
Abstract:
The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment.Keywords: expansion pressure, energy release rate, soundless chemical demolition agent, crack propagation
Procedia PDF Downloads 636373 Ripening Conditions Suitable for Marketing of Winter Squash ‘Bochang’
Authors: Do Su Park, Sang Jun Park, Cheon Soon Jeong
Abstract:
This study was performed in order to investigate the optimum ripening conditions for the marketing of Squash. Research sample 'Bochang' was grown at Hongcheonin in Gangwon province in August 2014. Ripening the samples were stored under the conditions of 25℃, 30℃, and 35℃ with the humidity RH70 ± 5%. They were checked every 3 days for 21 days. The respiration rate, water loss, hardness, coloration, the contents of soluble solids, starch, total sugar were evaluated after storage. Respiration rate was reduced in all treatments with longer storage period. Water loss was increased in the higher temperature. The 13% water loss was found at 35℃ on 21st storage day. The store initially 25℃ and 30℃ Hardness 47N and the ripening 21 days decreased slightly. On the other hand, in the case of 35℃ showed a large reduction than 25℃ and 30℃. Soluble solid contents were increased with longer ripening period. 30℃ and 35℃ was highest ripening 15 days. In the case of 25℃, it was highest on 21th day. The higher the temperature, the higher the soluble solids content are. 25℃ and 30℃ Coloration was increased rapidly until the ripening 12 days. In case of 35℃, continued increase up to 21 days. 25℃ and 30℃ showed no differences. Meanwhile, in case of 35℃, appearance quality was reduced in Occurrence of yellowing phenomenon of pericarp occurs from after ripening for 9 days. The coloration of fruit flesh is increase until after ripening for 9 days and decrease from after ripening for 9 days. There was no significant difference depending on the conditions of temperature. The higher the temperature, the lower the content of the starch. In case of 30℃ and 35℃, was reduced with longer storage period. 25℃ was minimal content change. Total sugar was increased in all treatments with longer storage period. The higher the temperature, the higher the amount of total sugar content is. Therefore, at 25℃ for 18-21 days and at 30℃ for 12-15 days is suitable for ripening.Keywords: marketing, ripening, temperature, winter squash
Procedia PDF Downloads 5986372 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 2666371 Post-Operative Pain Management in Ehlers-Danlos Hypermobile-Type Syndrome Following Wisdom Teeth Extraction: A Case Report and Literature Review
Authors: Aikaterini Amanatidou
Abstract:
We describe the case of a 20-year-old female patient diagnosed with Ehlers-Danlos Syndrome (EDS) who was scheduled to undergo a wisdom teeth extraction in outpatient surgery. EDS is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyper-extensibility, and vascular and soft tissue fragility. There are six subtypes of Ehlers-Danlos, and in our case, the patient had EDS hyper-mobility (HT) type disorder. One important clinical feature of this syndrome is chronic pain, which is often poorly understood and treated. Our patient had a long history of articular and lumbar pain when she was diagnosed. She was prescribed analgesic treatment for acute and neuropathic pain and had multiple sessions of psychotherapy and physiotherapy to ease the pain. Unfortunately, her extensive medical history was underrated by our anesthetic team, and no further measures were taken for the operation. Despite an uneventful intra-operative phase, the patient experienced several episodes of hyperalgesia during the immediate post-operative care. Management of pain was challenging for the anesthetic team: initial opioid treatment had only a temporary effect and a paradoxical reaction after a while. Final pain relief was eventually obtained with psycho-physiologic treatment, high doses of ketamine, and patient-controlled analgesia infusion of morphine-ketamine-dehydrobenzperidol. We suspected an episode of Opioid-Induced hyperalgesia. This case report supports the hypothesis that anti-hyperalgesics such as ketamine as well as lidocaine, and dexmedetomidine should be considered intra-operatively to avoid opioid-induced hyperalgesia and may be an alternative solution to manage complex chronic pain like others in neuropathic pain syndromes.Keywords: Ehlers-Danlos, post-operative management, hyperalgesia, opioid-induced hyperalgesia, rare disease
Procedia PDF Downloads 956370 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare
Abstract:
Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese
Procedia PDF Downloads 5086369 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid
Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar
Abstract:
This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection
Procedia PDF Downloads 1836368 Adsorption of Phosphate from Aqueous Solution Using Filter Cake for Urban Wastewater Treatment
Authors: Girmaye Abebe, Brook Lemma
Abstract:
Adsorption of phosphorus (P as PO43-) in filter cake was studied to assess the media's capability in removing phosphorous from wastewaters. The composition of the filter cake that was generated from alum manufacturing process as waste residue has high amount of silicate from the complete silicate analysis of the experiment. Series of batches adsorption experiments were carried out to evaluate parameters that influence the adsorption capacity of PO43-. The factors studied include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial PO43- concentration, pH of the solution and effect of co-existing anions. Results showed that adsorption of PO43- is fairly rapid in first 5 min and after that it increases slowly to reach the equilibrium in about 1 h. The treatment efficiency of PO43- was increased with adsorbent extent. About 90% removal efficiency was increased within 1 h at an optimum adsorbent dose of 10 g/L for initial PO43- concentration of 10 mg/L. The amount of PO43- adsorbed increased with increasing initial PO43- concentration. Heat treatment and surface neutralization of the adsorbent did not improve the PO43- removal capacity and efficiency. The percentage of PO43- removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Langmuir Isotherm and Dubinin–Radushkevick (D–R) isotherm model with a capacity of 25.84 and 157.55 mg/g of the adsorbent respectively. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 3.76 g.min−1.mg−1. The presence of bicarbonate or carbonate at higher concentrations (10–1000 mg/L) decreased the PO43- removal efficiency slightly while other anions (Cl-, SO42-, and NO3-) have no significant effect within the concentration range tested. The overall result shows that the filter cake is an efficient PO43- removing adsorbent against many parameters.Keywords: wastewater, filter cake, adsorption capacity, phosphate (PO43-)
Procedia PDF Downloads 2326367 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field
Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed
Abstract:
Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry
Procedia PDF Downloads 3136366 Savi Scout versus Wire-Guided Localization in Non-palpable Breast Lesions – Comparison of Breast Tissue Volume and Weight and Excision Safety Margin
Authors: Walid Ibrahim, Abdul Kasem, Sudeendra Doddi, Ilaria Giono, Tareq Sabagh, Muhammad Ammar, Nermin Osman
Abstract:
Background: wire-guided localization (WL) is the most widely used method for the localization of non-palpable breast lesions. SAVI SCOUT occult lesion localization (SSL) is a new technique in breast-conservative surgery. SSL has the potential benefit of improving radiology workflow as well as accurate localization. Purpose: The purpose of this study is to compare the breast tissue specimen volume and weight and margin excision between WL and SSL. Materials and methods: A single institution retrospective analysis of 377 female patients who underwent wide local breast excision with SAVI SCOUT and or wire-guided technique between 2018 and 2021 in a UK University teaching hospital. Breast department. Breast tissue specimen volume and weight, and margin excision have been evaluated in the three groups of different localization. Results: Three hundred and seventy-seven patients were studied. Of these, 261 had wire localization, 88 had SCOUT and 28 had dual localization techniques. Tumor size ranged from 1 to 75mm (Median 20mm). The pathology specimen weight ranged from 1 to 466gm (Median 46.8) and the volume ranged from 1.305 to 1560cm³ (Median 106.32 cm³). SCOUT localization was associated with a significantly low specimen weight than wire or the dual technique localization (Median 41gm vs 47.3gm and 47gm, p = 0.029). SCOUT was not associated with better specimen volume with a borderline significance in comparison to wire and combined techniques (Median 108cm³ vs 105cm³ and 105cm³, p = 0.047). There was a significant correlation between tumor size and pathology specimen weight in the three groups. SCOUT showed a better >2mm safety margin in comparison to the other 2 techniques (p = 0.031). Conclusion: Preoperative SCOUT localization is associated with better specimen weight and better specimen margin. SCOUT did not show any benefits in terms of specimen volume which may be due to difficulty in getting the accurate specimen volume due to the irregularity of the soft tissue specimen.Keywords: scout, wire, localization, breast
Procedia PDF Downloads 1106365 Effect of Processing Parameters on the Physical Properties of Pineapple Pomace Based Aquafeed
Authors: Oluwafemi Babatunde Oduntan, Isaac A. Bamgboye
Abstract:
The solid waste disposal and its management from pineapple juice processing constitute environmental contamination affecting public health. The use of this by-product called pomace has potentials to reduce cost of aquafeed. Pineapple pomace collected after juice extraction was dried and milled. The interactive effects of feeding rate (1.28, 1.44 and 1.60kg/min), screw speed (305, 355 and 405rpm), moisture content (16, 19 and 22%), temperatures (60, 80, 100 and 120°C), cutting speed (1300, 1400 and 1500rpm), pomace inclusion ratio (5, 10, 15, 20%) and open surface die (50, 75 and 100%) on the extrudate physical properties (bulk density, unit density, expansion ratio, durability and floatability) were investigated using optimal custom design (OCD) matrix and response surface methodology. The predicted values were found to be in good agreement with the experimental values for, expansion ratio, durability and floatability (R2 = 0.7970; 0.9264; 0.9098 respectively) with the exceptions of unit density and bulk density (R2 = 0.1639; 0.2768 respectively). All the extrudates showed relatively high floatability, durability. The inclusion of pineapple pomace produced less expanded and more compact textured extrudates. Results indicated that increased in the value of pineapple pomace, screw speed, feeding rate decreased unit density, bulk density, expansion ratio, durability and floatability of the extrudate. However, increasing moisture content of feed mash resulted in increase unit density and bulk density. Addition of extrusion temperature and cutting speed increased the floatability and durability of extrudate. The proportion of pineapple pomace in aquafeed extruded product was observed to have significantly lower effect on the selected responses.Keywords: aquafeed, extrusion, physical properties, pineapple pomace, waste
Procedia PDF Downloads 2716364 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia PDF Downloads 3166363 Soil Moisture Control System: A Product Development Approach
Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni
Abstract:
In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.Keywords: agriculture, human factors, product design, soil moisture control
Procedia PDF Downloads 1726362 Enhanced Photocatalytic H₂ Production from H₂S on Metal Modified Cds-Zns Semiconductors
Authors: Maali-Amel Mersel, Lajos Fodor, Otto Horvath
Abstract:
Photocatalytic H₂ production by H₂S decomposition is regarded to be an environmentally friendly process to produce carbon-free energy through direct solar energy conversion. For this purpose, sulphide-based materials, as photocatalysts, were widely used due to their excellent solar spectrum responses and high photocatalytic activity. The loading of proper co-catalysts that are based on cheap and earth-abundant materials on those semiconductors was shown to play an important role in the improvement of their efficiency. In this research, CdS-ZnS composite was studied because of its controllable band gap and excellent performance for H₂ evolution under visible light irradiation. The effects of the modification of this photocatalyst with different types of materials and the influence of the preparation parameters on its H₂ production activity were investigated. The CdS-ZnS composite with an enhanced photocatalytic activity for H₂ production was synthesized from ammine complexes. Two types of modification were used: compounds of Ni-group metals (NiS, PdS, and Pt) were applied as co-catalyst on the surface of CdS-ZnS semiconductor, while NiS, MnS, CoS, Ag₂S, and CuS were used as a dopant in the bulk of the catalyst. It was found that 0.1% of noble metals didn’t remarkably influence the photocatalytic activity, while the modification with 0.5% of NiS was shown to be more efficient in the bulk than on the surface. The modification with other types of metals results in a decrease of the rate of H₂ production, while the co-doping seems to be more promising. The preparation parameters (such as the amount of ammonia to form the ammine complexes, the order of the preparation steps together with the hydrothermal treatment) were also found to highly influence the rate of H₂ production. SEM, EDS and DRS analyses were made to reveal the structure of the most efficient photocatalysts. Moreover, the detection of the conduction band electron on the surface of the catalyst was also investigated. The excellent photoactivity of the CdS-ZnS catalysts with and without modification encourages further investigations to enhance the hydrogen generation by optimization of the reaction conditions.Keywords: H₂S, photoactivity, photocatalytic H₂ production, CdS-ZnS
Procedia PDF Downloads 1316361 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel
Authors: Changyeop Lee, Sewon Kim, Jongho Lee
Abstract:
Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.Keywords: NOx, CO, reburning, pollutant
Procedia PDF Downloads 2886360 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak
Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena
Abstract:
Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.Keywords: fusion, gas fueling, recycling, Tokamak, Aditya
Procedia PDF Downloads 4026359 Identifying Strategies and Techniques for the Egyptian Medium and Large Size Contractors to Respond to Economic Hardship
Authors: Michael Salib, Samer Ezeldin, Ahmed Waly
Abstract:
There are numerous challenges and problems facing the construction industry in several countries in the Middle East, as a result of numerous economic and political effects. As an example in Egypt, several construction companies have shut down and left the market since 2016. The closure of these companies occurred, as they did not respond with the suitable techniques and strategies that will enable them to survive during this economic turmoil period. A research is conducted in order to identify adequate strategies to be implemented by the Egyptian contractors that could allow them survive and keep competing during such economic hardship period. Two different techniques were used in order to identify these startegies. First, a deep research were conducted on the companies located in countries that suffered similar economic harship to identify the strategies they used in order to survive. Second, interviews were conducted with experts in the construction field in order to list the effective strategies they used that allowed them to survive. Moreover, at the end of each interview, the experts were asked to rate the applicability of the previously identified strategies used in the foreign countries, then the efficiency of each strategy if used in Egypt. A framework model is developed in order to assist the construction companies in choosing the suitable techniques to their company size, through identifying the top ranked strategies and techniques that should be adopted by the company based on the parameters given to the model. In order to verify this framework, the financial statements of two leading companies in the Egyptian construction market were studied. The first Contractor has applied nearly all the top ranked strategies identified in this paper, while the other contractor has applied only few of the identified top ranked strategies. Finally, another expert interviews were conducted in order to validate the framework. These experts were asked to test the model and rate through a questionnaire its applicability and effectiveness.Keywords: construction management, economic hardship, recession, survive
Procedia PDF Downloads 1266358 Indigenous Hair Treatment in Abyssinia
Authors: Makda Yeshitela Kifele
Abstract:
Hair treatment prevents the hair from loss of volume, changing colour, and damaging its properties of the hair. Hair is the beauty of human beings that makes people beautiful and takes the other hearts to see them and to give them an appreciation for their effort to treat their hair and save it from damage. There are different methods to protect human hair from loss and damage that influence human psychology better than the problems. Chemicals products are available in the world that keeps safely the hair and provide beauty for the hair. But chemical products have side effects and are not cost-effective. Even some of the chemicals are allergic for users and left some changes in the hair. Indigenous hair treatment is an effective method that reduces the bad effects and the problems of the chemical that are lefts in human being’slife. Indigenous hair treatment can treat the hair safely and effectively that does not have much effect or spots in the human hair the users rather, it improves some attributes of the hair such that shine, quality, quantity improvements, length, and flexibility can be modified by these indigenous treatments. Rate is the local plant that plays a significant role in hair treatment. Rate is the local plant that can be available everywhere in the country, and anybody can be used for hair treatments. For this research, 50 women are identified as sample populations with different hair characteristics. The treatments were collected from the fields and squeezed into the pots to be prepared as specimens. The squeezed plants were deposited in the refrigerator for three days with some amounts of salts to prevent some bacteria. Chemical analysis has been done to sort out some detrimental substances. So the result showed that there are no detrimental substances that affect the hair properties and the health of the users. The sample population used the oil for one month without any other oily cosmetics that disturbs the treatment. The output is very effective and brings shining the hair, preventing greying of the hair, showing fast-growing, increasing the volume of the hair, and becoming flexible and curly, straight hair, thicker, and with no allergic effects.Keywords: indigenous, chemicals, curly, treatment
Procedia PDF Downloads 1086357 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1426356 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3936355 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion
Authors: J. H. Park, R. H. Hwang, K. B. Yi
Abstract:
Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method
Procedia PDF Downloads 2096354 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 1086353 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India
Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra
Abstract:
Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate
Procedia PDF Downloads 1276352 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members
Authors: T. Sakamoto, S. Kainuma
Abstract:
Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.Keywords: accelerated deterioration test, coating durability, environmental factor, under-film corrosion
Procedia PDF Downloads 3696351 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3166350 High Speed Response Single-Inductor Dual-Output DC-DC Converter with Hysteretic Control
Authors: Y. Kobori, S. Tanaka, N. Tsukiji, N. Takai, H. Kobayashi
Abstract:
This paper proposes two kinds of new single-inductor dual-output (SIDO) DC-DC switching converters with ripple-based hysteretic control. First SIDO converters of type 1 utilize the triangular signal generated by the CR-circuit connected across the inductor. This triangular signal is used for generating the PWM signal instead of the saw-tooth signal used in the conventional converters. Second SIDO converters of type 2 utilize the triangular signal generated by the CR-circuit connected across the voltage error amplifier. This paper describes circuit topologies, Operation principles, simulation results and experimental results of the proposed SIDO converters. In simulation results of both type of SIDO converters, static output voltage ripples are less than 5mVpp and over/under shoots of the dynamic load regulations for the output current step are less than +/- 10mV. In experimental results of single output converter of type 2, static output voltage ripples are about 20mVpp. Output ripples of SIDO type 1 converter are about 80mVpp.Keywords: DC-DC converter, switching converter, SIDO converter, hysteretic control, ripple-based control
Procedia PDF Downloads 5746349 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology
Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen
Abstract:
Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient
Procedia PDF Downloads 2076348 Paper Concrete: A Step towards Sustainability
Authors: Hemanth K. Balaga, Prakash Nanthagopalan
Abstract:
Every year a huge amount of paper gets discarded of which only a minute fraction is being recycled and the rest gets dumped as landfills. Paper fibres can be recycled only a limited number of times before they become too short or weak to make high quality recycled paper. This eventually adds to the already big figures of waste paper that is being generated and not recycled. It would be advantageous if this prodigious amount of waste can be utilized as a low-cost sustainable construction material and make it as a value added product. The generic term for the material under investigation is paper-concrete. This is a fibrous mix made of Portland cement, water and pulped paper and/or other aggregates. The advantages of this material include light weight, good heat and sound insulation capability and resistance to flame. The disadvantages include low strength compared to conventional concrete and its hydrophilic nature. The properties vary with the variation of cement and paper content in the mix. In the present study, Portland Pozzolona Cement and news print paper were used for the preparation of paper concrete cubes. Initially, investigations were performed to determine the minimum soaking period required for the softening of the paper fibres. Further different methodologies were explored for proper blending of the pulp with cement paste. The properties of paper concrete vary with the variation of cement to paper to water ratio. The study mainly addresses the parameters of strength and weight loss of the concrete cubes with age and the time that is required for the dry paper fibres to become soft enough in water to bond with the cement. The variation of compressive strength with cement content, water content, and time was studied. The water loss of the cubes with time and the minimum time required for the softening of paper fibres were investigated .Results indicate that the material loses 25-50 percent of the initial weight at the end of 28 days, and a maximum 28 day compressive strength (cubes) of 5.4 Mpa was obtained.Keywords: soaking time, difference water, minimum water content, maximum water content
Procedia PDF Downloads 2566347 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy
Authors: Walid Tawfik
Abstract:
The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband
Procedia PDF Downloads 206