Search results for: lung cancer cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4930

Search results for: lung cancer cells

910 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: renewable energy sources, micro-grid system, modeling and simulation, on/off grid system, environmental impacts

Procedia PDF Downloads 270
909 Free Radical Scavenging Activity and Total Phenolic Assessment of Drug Repurposed Medicinal Plant Metabolites: Promising Tools against Post COVID-19 Syndromes and Non-Communicable Diseases in Botswana

Authors: D. Motlhanka, M. Mine, T. Bagaketse, T. Ngakane

Abstract:

There is a plethora of evidence from numerous sources that highlights the triumph of naturally derived medicinal plant metabolites with antioxidant capability for repurposed therapeutics. As post-COVID-19 syndromes and non-communicable diseases are on the rise, there is an urgent need to come up with new therapeutic strategies to address the problem. Non-communicable diseases and Post COVID-19 syndromes are classified as socio-economic diseases and are ranked high among threats to health security due to the economic burden they pose to any government budget commitment. Research has shown a strong link between accumulation of free radicals and oxidative stress critical for pathogenesis of non-communicable diseases and COVID-19 syndromes. Botswana has embarked on a robust programme derived from ethno-pharmacognosy and drug repurposing to address these threats to health security. In the current approach, a number of medicinally active plant-derived polyphenolics are repurposed and combined into new medicinal tools to target diabetes, Hypertension, Prostate Cancer and oxidative stress induced Post COVID 19 syndromes such as “brain fog”. All four formulants demonstrated Free Radical scavenging capacities above 95% at 200µg/ml using the diphenylpicryalhydrazyl free radical scavenging assay and the total phenolic contents between 6899-15000GAE(g/L) using the folin-ciocalteau assay respectively. These repurposed medicinal tools offer new hope and potential in the fight against emerging health threats driven by hyper-inflammation and free radical-induced oxidative stress.

Keywords: drug repurposed plant polyphenolics, free radical damage, non-communicable diseases, post COVID 19 syndromes

Procedia PDF Downloads 128
908 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 105
907 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
906 Assessment of the Association between Serum Thrombospondin-1 Levels at the Time of Admission and the Severity of Neurological Deficit in Patients with Ischemic Stroke

Authors: A. Alhusban, M. Alqawasmeh, F. Alfawares

Abstract:

Introduction: Despite improvements in stroke management, it remains the leading cause of disability worldwide. It has been suggested that enhancing brain angiogenesis after stroke will improve stroke outcome. Promoting post stroke angiogenesis requires the upregulation of angiogenic factors with a simultaneous reduction of anti-angiogenic factors. Thrombospondin-1 is the main anti-angiogenic protein in the living cells. Counterintuitively, it has been shown that animals with Thrombospondin-1 knockdown will have better stroke outcome. Data about the clinical significance of Thrombspondin-1 levels at the time of admission is still lacking. The objective of this work is to assess the association between serum Thrombospondin-1 levels measured at the time of admission and baseline neurologic severity after stroke. Patients and Methods: Blood samples were collected from patients admitted to the King Abdullah University Hospital (KAUH) with ischemic stroke at the time of admission and serum Thrombopsondin-1 levels were measured using ELISA. Patients neurologic severity was evaluated using the National Institute of Health Stroke Scale (NIHSS). Results: Samples from 50 patients admitted between January 2016 and December 2016 were collected. The median age of participants was 68 years and the median NIHSS was 3. Multinomial regression identified serum Thrombospondin-1 as an independent predictor of stroke outcome (p=0.003). Baseline serum Thrombsopondin-1 was negatively associated with NIHSS at the time of admission (spearman rho correlation coefficient=0.272, p=0.032). Conclusion: Serum Thrombospondin-1 at the time of admission may be a useful marker of stroke severity that predicts more severe neurologic severity.

Keywords: thrombospondin, stroke, neuroprotection, biomarkers

Procedia PDF Downloads 137
905 Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments

Authors: Daniel Adjei, Mesfin Getachew Ayele, Przemyslaw Wachulak, Andrzej Bartnik, Luděk Vyšín, Henryk Fiedorowicz, Inam Ul Ahad, Lukasz Wegrzynski, Anna Wiechecka, Janusz Lekki, Wojciech M. Kwiatek

Abstract:

Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed.

Keywords: laser produced plasma, soft X-rays, radio biology experiments, dosimetry

Procedia PDF Downloads 588
904 Phenolic Composition and Antioxidant Property of Honey with Dried Apricots

Authors: Jasna Čanadanović-Brunet, Gordana Ćetković, Sonja Djilas, Vesna Tumbas-Šaponjac, Jelena Vulić, Sladjana Stajčić

Abstract:

Honey, produced by the honeybee, is a natural saturated sugar solution, which is mainly composed of a complex mixture of carbohydrates. Besides this, it also contains certain minor constituents, proteins, enzymes, amino and organic acids, lipids, vitamins, phenolic acids, flavonoids and carotenoids. Honey serves as a source of natural antioxidants, which are effective in reducing the risk of heart disease, cancer, immune-system decline, cataracts, and different inflammatory processes. Honey is consumed in its natural form alone, but also in combination with nuts and various kinds of dried fruits (plums, figs, cranberries, apricots etc.). The aim of this research was to investigate the contribution of dried apricot addition to polyphenols and flavonoids contents and antioxidant activities of honey. Some individual phenolic compounds in Serbian polyfloral honey (PH), linden honey (LH) and also in their mixtures with dried apricot, in 40% mass concentrations (PH40; LH40), were identified and quantified by HPLC. The most dominant phenolic compound was: gallic acid in LH (11.14 mg/100g), LH40 (42.65 mg/100g), PH (7.24 mg/100g) and catehin in PH40 (11.83 mg/100g). The antioxidant activity of PH, LH, PH40 and LH40 was tested by measuring their ability to scavenge hydroxyl radicals (OH) by electron spin resonance spectroscopy (ESR). Honey samples with 40% dried apricot exhibited better antioxidant activity measured by hydroxyl radical scavenging activity. The EC50 values, the amount of antioxidant necessary to decrease the initial concentration of OH radicals by 50%, were: EC50PH=3.36 mg/ml, EC50LH=13.36 mg/ml, EC50PH40=2.29 mg/ml, EC50 LH40=7.78 mg/ml. Our results indicate that supplementation of polyfloral honey and linden honey with dried apricots improves antioxidant activity of honey by enriching the phenolic composition.

Keywords: honey, dried apricot, HPLC, hydroxyl radical

Procedia PDF Downloads 356
903 The Effects of Continuous and Interval Aerobic Exercises with Moderate Intensity on Serum Levels of Glial Cell Line-Derived Neurotrophic Factor and Aerobic Capacity in Obese Children

Authors: Ali Golestani, Vahid Naseri, Hossein Taheri

Abstract:

Recently, some of studies examined the effect of exercise on neurotrophic factors influencing the growth, protection, plasticity and function in central and peripheral nerve cells. The aim of this study was to investigate the effects of continuous and interval aerobic exercises with moderate intensity on serum levels of glial cell line-derived neurotrophic factor (GDNF) and aerobic capacity in obese children. 21 obese students with an average age of 13.6 ± 0.5 height 171 ± 5 and BMI 32 ± 1.2 were divided randomly to control, continuous aerobic and interval aerobic groups. Training protocol included continuous or interval aerobic exercises with moderate intensity 50-65%MHR, three times per week for 10 weeks. 48 hours before and after executing of protocol, blood samples were taken from the participants and their GDNF serum levels were measured by ELISA. Aerobic power was estimated using Shuttle-run test. T-test results indicated a small increase in their GDNF serum levels, which was not statistically significant (p =0.11). In addition, the results of ANOVA did not show any significant difference between continuous and interval aerobic training on the serum levels of their GDNF but their aerobic capacity significantly increased (p =0.012). Although continuous and interval aerobic exercise improves aerobic power in obese children, they had no significant effect on their serum levels of GDNF.

Keywords: aerobic power, continuous aerobic training, glial cell line-derived neurotrophic factor (GDNF), interval aerobic training, obese children

Procedia PDF Downloads 177
902 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 290
901 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling

Procedia PDF Downloads 355
900 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: apatite, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 128
899 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali

Abstract:

We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.

Keywords: thin film, CdS, new method, optical properties

Procedia PDF Downloads 260
898 Inferring the Ecological Quality of Seagrass Beds from Using Composition and Configuration Indices

Authors: Fabrice Houngnandan, Celia Fery, Thomas Bockel, Julie Deter

Abstract:

Getting water cleaner and stopping global biodiversity loss requires indices to measure changes and evaluate the achievement of objectives. The endemic and protected seagrass species Posidonia oceanica is a biological indicator used to monitor the ecological quality of marine Mediterranean waters. One ecosystem index (EBQI), two biotic indices (PREI, Bipo), and several landscape indices, which measure the composition and configuration of the P. oceanica seagrass at the population scale have been developed. While the formers are measured at monitoring sites, the landscape indices can be calculated for the entire seabed covered by this ecosystem. This present work aims to search on the link between these indices and the best scale to be used in order to maximize this link. We used data collected between 2014 to 2019 along the French Mediterranean coastline to calculate EBQI, PREI, and Bipo at 100 sites. From the P. oceanica seagrass distribution map, configuration and composition indices around these different sites in 6 different grid sizes (100 m x 100 to 1000 m x 1000 m) were determined. Correlation analyses were first used to find out the grid size presenting the strongest and most significant link between the different types of indices. Finally, several models were compared basis on various metrics to identify the one that best explains the nature of the link between these indices. Our results showed a strong and significant link between biotic indices and the best correlations between biotic and landscape indices within the 600 m x 600 m grid cells. These results showed that the use of landscape indices is possible to monitor the health of seagrass beds at a large scale.

Keywords: ecological indicators, decline, conservation, submerged aquatic vegetation

Procedia PDF Downloads 131
897 FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum

Authors: Valiollah Babaeipour, Mahdi Rahaie

Abstract:

food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased.

Keywords: wheat germ, FWGE, saccharomyces cerevisiae, lactobacillus plantarum, co-culture, 2, 6-DMBQ

Procedia PDF Downloads 130
896 Free Energy Computation of A G-Quadruplex-Ligand Structure: A Classical Molecular Dynamics and Metadynamics Simulation Study

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure formed by stacked planes of four base paired guanines (G-quartet). Guanine rich DNA sequences appear in many sites of genomic DNA and can potential form G-quadruplexes, such as those occurring at 3'-terminus of the human telomeric DNA. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to down regulate oncogene expression making G-quadruplex an attractive target for anticancer therapy. Many G-quadruplex ligands have been proposed with a planar core to facilitate the pi–pi stacking and electrostatic interactions with the G-quartets. However, many drug candidates are impossibilitated to discriminate a G-quadruplex from a double helix DNA structure. In this context, it is important to investigate the site topology for the interaction of a G-quadruplex with a ligand. In this work, we determine the free energy surface of a G-quadruplex-ligand to study the binding modes of the G-quadruplex (TG4T) with the daunomycin (DM) drug. The complex TG4T-DM is studied using classical molecular dynamics in combination with metadynamics simulations. The metadynamics simulations permit an enhanced sampling of the conformational space with a modest computational cost and obtain free energy surfaces in terms of the collective variables (CV). The free energy surfaces of TG4T-DM exhibit other local minima, indicating the presence of additional binding modes of daunomycin that are not observed in short MD simulations without the metadynamics approach. The results are compared with similar calculations on a different structure (the mutated mu-G4T-DM where the 5' thymines on TG4T-DM have been deleted). The results should be of help to design new G-quadruplex drugs, and understand the differences in the recognition topology sites of the duplex and quadruplex DNA structures in their interaction with ligands.

Keywords: g-quadruplex, cancer, molecular dynamics, metadynamics

Procedia PDF Downloads 460
895 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band

Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz

Abstract:

This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.

Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi

Procedia PDF Downloads 121
894 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI

Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist

Abstract:

Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.

Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma

Procedia PDF Downloads 143
893 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
892 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles

Authors: Emil F. Khisamutdinov

Abstract:

Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.

Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers

Procedia PDF Downloads 80
891 Hippocampus Proteomic of Major Depression and Antidepressant Treatment: Involvement of Cell Proliferation, Differentiation, and Connectivity

Authors: Dhruv J. Limaye, Hanga Galfalvy, Cheick A. Sissoko, Yung-yu Huang, Chunanning Tang, Ying Liu, Shu-Chi Hsiung, Andrew J. Dwork, Gorazd B. Rosoklija, Victoria Arango, Lewis Brown, J. John Mann, Maura Boldrini

Abstract:

Memory and emotion require hippocampal cell viability and connectivity and are disrupted in major depressive disorder (MDD). Applying shotgun proteomics and stereological quantification of neural progenitor cells (NPCs), intermediate neural progenitors (INPs), and mature granule neurons (GNs), to postmortem human hippocampus, identified differentially expressed proteins (DEPs), and fewer NPCs, INPs and GNs, in untreated MDD (uMDD) compared with non-psychiatric controls (CTRL) and antidepressant-treated MDD (MDDT). DEPs lower in uMDD vs. CTRL promote mitosis, differentiation, and prevent apoptosis. DEPs higher in uMDD vs. CTRL inhibit the cell cycle, and regulate cell adhesion, neurite outgrowth, and DNA repair. DEPs lower in MDDT vs. uMDD block cell proliferation. We observe group-specific correlations between numbers of NPCs, INPs, and GNs and an abundance of proteins regulating mitosis, differentiation, and apoptosis. Altered protein expression underlies hippocampus cellular and volume loss in uMDD, supports a trophic effect of antidepressants, and offers new treatment targets.

Keywords: proteomics, hippocampus, depression, mitosis, migration, differentiation, mitochondria, apoptosis, antidepressants, human brain

Procedia PDF Downloads 100
890 Smoking Elevates the Risk of Dysbiosis Associated with Dental Decay

Authors: Razia Hossaini, Maryam Hosseini

Abstract:

Background and Objective: The impact of smoking on the shift in oral microbial composition has been questioned. This study aims to compare the oral microbiome between Turkish patients with dental caries and healthy individuals. Materials and Methods: An observational case-control study was conducted from January to June 2024, involving 270 young adults (180 with dental caries and 90 healthy controls). Participants were matched by age, gender, education, sugar consumption, and tooth brushing habits. Oral samples were collected using sterilized swabs and preserved in a PBS-glycerol solution. The cultured bacterial samples were characterized based on their morphological characteristics, Gram staining properties, hemolysis patterns, and biochemical tests including methyl red, sugar fermentation, Simmons citrate utilization, coagulase production, and catalase activity. These tests were conducted to accurately identify the bacterial species present. Subsequently, the relationship between smoking and oral health was evaluated, with a particular focus on assessing the smoking-induced changes in the composition of the oral microbiota using statistical analyses. Results: The study’s results demonstrate a clear association between smoking and an increased risk of dental caries, as well as significant shifts in the oral microbiota of smokers (p=0.04). These findings emphasize the critical need for public health initiatives that target smoking cessation as a means of improving oral health outcomes. Since smokers are 1.28 times more likely to develop dental caries than non-smokers, public health campaigns should incorporate messages that highlight the direct impact of smoking on oral health, alongside the well-established risks such as lung disease and cardiovascular conditions.The observed alterations in the oral microbiota—specifically the higher prevalence of pathogens like Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, and Lactobacillus acidophilus in patients with dental caries—suggest that smoking not only predisposes individuals to dental decay but also creates an environment conducive to the growth of harmful bacteria. Public health interventions could therefore focus on the dual benefit of smoking cessation: reducing the incidence of dental caries and restoring a healthier oral microbiome. Additionally, the reduced presence of beneficial or less pathogenic species such as Neisseria and Micrococcus luteus in smokers implies that smoking alters the protective balance of the oral microbiome. This further underscores the importance of preventive oral health strategies tailored to smokers. Conclusion: Smoking significantly impacts oral health by promoting dysbiosis, increasing cariogenic bacteria, and reducing beneficial bacteria, which contributes to the development of dental caries. These findings highlight the need for integrated public health efforts that address both smoking cessation and oral health promotion. By raising awareness of the specific oral health risks associated with smoking, public health initiatives could help reduce the burden of dental caries and other smoking-related oral diseases, ultimately improving quality of life for individuals and reducing healthcare costs.

Keywords: smoking, dysbiosis, bacteria, oral health, dental decay

Procedia PDF Downloads 19
889 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell

Authors: Sharda Nara, Bansi Dhar Malhotra

Abstract:

Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.

Keywords: biofuel cell, electroactivity, folic acid, tissue engineering

Procedia PDF Downloads 131
888 Distribution of Cytochrome P450 Gene in Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Introduction: Medical cannabis can be used for treatment, including anorexia, pain, inflammation, multiple sclerosis, Parkinson's disease, epilepsy, cancer, and metabolic syndrome-related disorders. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 (C430T) (Arg144Cys) and CYP2C9*3 on exon 7 (A1075C) (Ile359Leu) to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are a pharmacogenetics marker for prediction of THC-induced AEs in Thai patients. Objective: We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. Method: We enrolled 39 Thai patients with medical cannabis treatment consisting of men and women who were classified by clinical data. The quality of DNA extraction was assessed by using NanoDrop ND-1000. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay (ABI, Foster City, CA, USA). Results: All Thai patients who received the medical cannabis consist of twenty four (61.54%) patients who were female and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty nine (7.69%) and one of thirty nine (2.56%) , respectively. Conclusion: This is the first study to confirm the genetic polymorphism of CYP2C9 and medical cannabis-induced AEs in the Thai population. Although, our results indicates that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 105
887 CCR5 as an Ideal Candidate for Immune Gene Therapy and Modification for the Induced Resistance to HIV-1 Infection

Authors: Alieh Farshbaf, Tayyeb Bahrami

Abstract:

Introduction: Cc-chemokine receptor-5 (CCR5) is known as a main co-receptor in human immunodeficiency virus type-1 (HIV-1) infection. Many studies showed 32bp deletion (Δ32) in CCR5 gene, provide natural resistance to HIV-1 infection in homozygous individuals. Inducing the resistance mechanism by CCR5 in HIV-1 infected patients eliminated many problems of highly-active-anti retroviral therapy (HAART) drugs like as low safety, side-effects and virus rebounding from latent reservoirs. New treatments solved some restrictions that are based on gene modification and cell therapy. Literature review: The stories of the “Berlin and Boston patients” showed autologous hematopoietic stem cells transplantation (HSCT) could provide effective cure of HIV-1 infected patients. Furthermore, gene modification by zinc finger nuclease (ZFN) demonstrated another successful result again. Despite the other studies for gene therapy by ∆32 genotype, there is another mutation -CCR5 ∆32/m303- that provides HIV-1 resistant. It is a heterozygote genotype for ∆32 and T→A point mutation at nucleotide 303. These results approved the key role of CCR5 gene. Conclusion: Recent studies showed immune gene therapy and cell therapy could provide effective cure for refractory disease like as HIV. Eradication of HIV-1 from immune system was not observed by HAART, because of reloading virus genome from latent reservoirs after stopping them. It is showed that CCR5 could induce natural resistant to HIV-1 infection by the new approaches based on stem cell transplantation and gene modifying.

Keywords: CCR5, HIV-1, stem cell, immune gene therapy, gene modification

Procedia PDF Downloads 290
886 Obesity, Leptin Levels and Leptin Receptor Gene Polymorphisms in Afro-Caribbean Subjects

Authors: Lydia Foucan, Christine Rambhojan, Rachel Billy, Christophe Armand, Carl-Thony Michel, Jean-Marc Lacorte, Laurent Larifla

Abstract:

Leptin, an adipocyte-derived hormone, modulates insulin secretion and action via the leptin receptor (LEPR) that is expressed in pancreatic beta cells, adipose tissue, and muscle. Several polymorphisms have been described in the human LEPR gene including p.K109R (rs1137100), p.Q223R (rs1137101) and p.K656N (rs1805094) polymorphisms. The role of these polymorphisms is not yet studied in Guadeloupian population. Our aim was to explore the association of LEPR polymorphisms (K109R, Q223R and K656N) with leptin levels and obesity in non-diabetic Afro-Caribbean subjects. Genotypic analysis of the three polymorphisms was performed in 425 subjects using TaqMan and KASPar Assays. Serum leptin was measured with ELISA kits Biovendor® (RD191001100). Logistic regressions were used for assessment of statistical associations. Mean age was 47.6 ± 12.7 years. Among the participants, 238 (56 %) were women, 124 (30%) were obese and 155 (36.5%) had abdominal obesity. Carriers of LEPR K656N rs1805094 rare allele had significant higher frequencies of obesity (P = 0.007), abdominal obesity (P = 0.004) and metabolic syndrome (P = 0.021) but mean leptin level was not significantly different between both groups (P = 0.075). Odds ratios, adjusted for age and sex associated with presence of rs1805094 rare allele were 1.8 (1.1-2.9), P = 0.012 for obesity, 2.0 (1.2-3.3), P = 0.008 for abdominal obesity and 1.8 (1.1-3.0), P = 0.031 for MetS. No significant association was found with K109R, Q223R. These findings suggest that the K656N polymorphism (but not the K109R or Q223R polymorphism) of LEPR is associated with obesity, abdominal obesity and metabolic syndrome in this Afro-Caribbean non-diabetic population.

Keywords: Afro-Caribbean, leptin levels, leptin receptor gene polymorphisms, obesity

Procedia PDF Downloads 377
885 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses

Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.

Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment

Procedia PDF Downloads 377
884 The Effect of the Archeological and Architectural Nature of the Cities on the Design of Public Transportation Vehicles

Authors: Mohamed Moheyeldin Mahmoud

Abstract:

Various Islamic, Coptic and Jewish archeological places are located in many Egyptian neighborhoods such as Alsayeda zainab, Aldarb Alahmar, Algammaleya and many other in which they are daily exposed to a great traffic intensity causing vibrations. Vibrations could be stated as one of the most important challenges that face the archeological buildings and threaten their survival. The impact of vibrations varies according to the nature of the soil, nature and building conditions, how far the source of vibration is and the period of exposure. Traffic vibrations could be also stated as one of the most common types of vibrations having the greatest impact on buildings and archaeological installations. These vibrations result from the way that the vehicles act with different types of roads which vary according to the shape, nature, and type of obstacles. Other elements concerning the vehicle itself such as speed, weight, and load have a direct impact on the vibrations resulting from the vehicle movement that couldn't be neglected. The research aims to determine some of the requirements that must be observed when designing the public means of transport operating in the archaeological areas, in order to preserve the archaeological nature of the place. The research concludes that light weight slow motion vehicles should be used (25-50 km/h at maximum) having a multi-leaf steel spring suspension system instead of having an air-bag one should be used in order to reduce generated vibrations that could destroy the archeological buildings. Isolation layers could be used in the engine chamber in order to reduce the resulting noise causing vibrations. Electrically operated engines that use solar photovoltaic cells as a source of electricity could be used instead of gas ones in order to reduce the resulting engine noise.

Keywords: archeological, design, isolation layers, suspension, vibrations

Procedia PDF Downloads 191
883 Urban Neighborhood Center Location Evaluating Method Based On UNA the GIS Spatial Analysis Tools: Kerman's Neighborhood in Tehran Case

Authors: Sepideh Jabbari Behnam, Shadabeh Gashtasbi Iraei, Elnaz Mohsenin, MohammadAli Aghajani

Abstract:

Urban neighborhoods, as important urban forming cells, play a key role in creating urban texture and integrated form. Nowadays, most of neighborhood divisions are based on urban management systems but without considering social issues and the other aspects of urban life. This can cause problems such as providing inappropriate services for city dwellers, the loss of local identity and etc. In this regard for regenerating of such neighborhoods, it is essential to locate neighborhood centers with appropriate access and services for all residents. The main objective of this article is reaching to the location of neighborhood centers in a way that, most of issues relating to the physical features (such as the form of access network and texture permeability and etc.) and other qualities such as land uses, densities and social and economic features can be done simultaneously. This paper attempts to use methods of spatial analysis in order to surveying spatial structure and space syntax of urban textures and Urban Network Analysis Systems. This can be done by one of GIS toolbars which is named UNA (Urban Network Analysis) with the use of its five functions (include: Reach, Betweenness, Gravity, Closeness, Straightness).These functions were written according to space syntax theory and offer its relating output. This paper tries to locate and evaluate the optimal location of neighborhood centers in order to create local centers. This is done through weighing of each of these functions and taking into account of spatial features.

Keywords: evaluate optimal location, Local centers, location of neighborhood centers, Spatial analysis, Urban network

Procedia PDF Downloads 463
882 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 87
881 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa

Authors: Abraham Addo-Bediako

Abstract:

Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.

Keywords: land use, health risk, metal pollution, water quality

Procedia PDF Downloads 87