Search results for: interlaminar damage model
14743 Critical Success Factors of OCOP Business Model in Pattani Province, Thailand: A Qualitative Approach
Authors: Poonsuck Thatchaopas, Nik Kamariah Nik Mat, Nattakarn Eakuru
Abstract:
“One College One Product” OCOP business model is launched by the Vocational Education Commission to encourage college students to choose at least one product for business venture. However, the number of successful OCOP projects is still minimal. The objective of this paper is to identify the critical success factors needed to be a successful OCOP business entrepreneur. This study uses qualitative method by interviewing business partners of an OCOP business called Crispy Roti Krua Acheeva Brand (CRKAB). This project was initiated by three female alumni students of the CRKAB. The finding shows that the main critical success factors are self-confidence, creativity or innovativeness, knowledge, skills and perseverance. Additionally, they reiterated that the keys to business success are product quality, perceived price, promotion, branding, new packaging to increase sales and continuous developments. The results implies for a business SME to be successful, the company should have credible partners and effective marketing plan.Keywords: new entrepreneurship student model, business incubator, food industry, Pattani Province, Thailand
Procedia PDF Downloads 38114742 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions
Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad
Abstract:
This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability
Procedia PDF Downloads 31614741 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 8714740 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages
Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei
Abstract:
In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model
Procedia PDF Downloads 35514739 Calculation Of Energy Gap Of (Ga,Mn)As Diluted Magnetic Semiconductor From The Eight-Band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
Now a days (Ga, Mn) is one of the most extensively studied and best understood diluted magnetic semiconductors. Also, the study of (Ga, Mn)As is a fervent research area since it allows to explore of a variety of novel functionalities and spintronics concepts that could be implemented in the future. In this work, we will calculate the energy gap of (Ga, Mn)As using the eight-band model. In the Hamiltonian, the effects of spin-orbit, spin-splitting, and strain will be considered. The dependence of the energy gap on Mn content, and the effect of the strain, which is varied continuously from tensile to compressive, will be studied. Finally, analytical expressions for the (Ga, Mn)As energy band gap, taking into account both parameters (Mn concentration and strain), will be provided.Keywords: energy gap, diluted magnetic semiconductors, k.p method, strain
Procedia PDF Downloads 12514738 Investigating the Association between Escherichia Coli Infection and Breast Cancer Incidence: A Retrospective Analysis and Literature Review
Authors: Nadia Obaed, Lexi Frankel, Amalia Ardeljan, Denis Nigel, Anniki Witter, Omar Rashid
Abstract:
Breast cancer is the most common cancer among women, with a lifetime risk of one in eight of all women in the United States. Although breast cancer is prevalent throughout the world, the uneven distribution in incidence and mortality rates is shaped by the variation in population structure, environment, genetics and known lifestyle risk factors. Furthermore, the bacterial profile in healthy and cancerous breast tissue differs with a higher relative abundance of bacteria capable of causing DNA damage in breast cancer patients. Previous bacterial infections may change the composition of the microbiome and partially account for the environmental factors promoting breast cancer. One study found that higher amounts of Staphylococcus, Bacillus, and Enterobacteriaceae, of which Escherichia coli (E. coli) is a part, were present in breast tumor tissue. Based on E. coli’s ability to damage DNA, it is hypothesized that there is an increased risk of breast cancer associated with previous E. coli infection. Therefore, the purpose of this study was to evaluate the correlation between E. coli infection and the incidence of breast cancer. Holy Cross Health, Fort Lauderdale, provided access to the Health Insurance Portability and Accountability (HIPAA) compliant national database for the purpose of academic research. International Classification of Disease 9th and 10th Codes (ICD-9, ICD-10) was then used to conduct a retrospective analysis using data from January 2010 to December 2019. All breast cancer diagnoses and all patients infected versus not infected with E. coli that underwent typical E. coli treatment were investigated. The obtained data were matched for age, Charlson Comorbidity Score (CCI score), and antibiotic treatment. Standard statistical methods were applied to determine statistical significance and an odds ratio was used to estimate the relative risk. A total of 81286 patients were identified and analyzed from the initial query and then reduced to 31894 antibiotic-specific treated patients in both the infected and control group, respectively. The incidence of breast cancer was 2.51% and present in 2043 patients in the E. coli group compared to 5.996% and present in 4874 patients in the control group. The incidence of breast cancer was 3.84% and present in 1223 patients in the treated E. coli group compared to 6.38% and present in 2034 patients in the treated control group. The decreased incidence of breast cancer in the E. coli and treated E. coli groups was statistically significant with a p-value of 2.2x10-16 and 2.264x10-16, respectively. The odds ratio in the E. coli and treated E. coli groups was 0.784 and 0.787 with a 95% confidence interval, respectively (0.756-0.813; 0.743-0.833). The current study shows a statistically significant decrease in breast cancer incidence in association with previous Escherichia coli infection. Researching the relationship between single bacterial species is important as only up to 10% of breast cancer risk is attributable to genetics, while the contribution of environmental factors including previous infections potentially accounts for a majority of the preventable risk. Further evaluation is recommended to assess the potential and mechanism of E. coli in decreasing the risk of breast cancer.Keywords: breast cancer, escherichia coli, incidence, infection, microbiome, risk
Procedia PDF Downloads 25614737 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream
Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes
Abstract:
Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution
Procedia PDF Downloads 18814736 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 14014735 Tracking Maximum Power Point Utilizing Artificial Immunity System
Authors: Marwa Ahmed Abd El Hamied
Abstract:
In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods
Procedia PDF Downloads 42914734 Frequent-Flyer Program: The Connection between Commercial Partners and Spin-off
Authors: Changmin Jiang
Abstract:
In this paper, we build a theoretical model to investigate the relationship between two recent trends in airline frequent-flyer programs (FFPs): the adoption of the “coalition” business model with other commercial partners, and the separation from airlines’ operations. We show that commercial partners benefit from teaming up with FFP, while increasing the number of commercial partners will increase the total profit; it reduces the average profit of the parties involved. Furthermore, we show that the number of commercial partners of an FFP is negatively related with the benefit to keep the FFP in-house.Keywords: frequent flyer program, coalition, commercial partners, spin-off
Procedia PDF Downloads 30514733 Cognitive Behaviour Drama: Playful Method to Address Fears in Children on the Higher-End of the Autism Spectrum
Authors: H.Karnezi, K. Tierney
Abstract:
Childhood fears that persist over time and interfere with the children’s normal functioning may have detrimental effects on their social and emotional development. Cognitive behavior therapy is considered highly effective in treating fears and anxieties. However, given that many childhood fears are based on fantasy, the applicability of CBT may be hindered by cognitive immaturity. Furthermore, a lack of motivation to engage in therapy is another commonly encountered obstacle. The purpose of this study was to introduce and evaluate a more developmentally appropriate intervention model, specifically designed to provide phobic children with the motivation to overcome their fears. To this end, principles and techniques from cognitive and behavior therapies are incorporated into the ‘Drama in Education’ model. The Cognitive Behaviour Drama (CBD) method involves using the phobic children’s creativity to involve them in the therapeutic process. The children are invited to engage in exciting fictional scenarios tailored around their strengths and special interests. Once their commitment to the drama is established, a problem that they will feel motivated to solve is introduced. To resolve it, the children will have to overcome a number of obstacles culminating in an in vivo confrontation with the fear stimulus. The study examined the application of the CBD model in three single cases. Results in all three cases shown complete elimination of all fear-related symptoms. Preliminary results justify further evaluation of the Cognitive Behaviour Drama model. It is time and cost-effective, ensuring the clients' immediate engagement in the therapeutic process.Keywords: phobias, autism, intervention, drama
Procedia PDF Downloads 13214732 An Educational Program Based on Health Belief Model to Prevent Non-Alcoholic Fatty Liver Disease among Iranian Women
Authors: Babak Nemat
Abstract:
Background and Purpose: Non-alcoholic fatty liver is one of the most common liver disorders, which, as the most important cause of death from liver disease, has unpleasant consequences and complications. The aim of this study was to investigate the effect of an educational intervention based on a health belief model to prevent non-alcoholic fatty liver among women. Materials and Methods: This experimental study was performed among 110 women referring to comprehensive health service centers in Malayer City, west of Iran, in 2023. Using the available sampling method, 110 participants were divided into experimental and control groups. The data collection tool included demographic characteristics and a questionnaire based on the health belief model. In the experimental group, three one-hour training sessions were conducted in the form of pamphlets, lectures, and group discussions. Data were analyzed using SPSS software version 21, by correlation tests, paired t-tests, and independent t-tests. Results: The mean age of participants was 38.07±6.28 years, and most of the participants were middle-aged, married, housewives with academic education, middle-income, and overweight. After the educational intervention, the mean scores of the constructs include perceived sensitivity (p=0.01), perceived severity (p=0.01), perceived benefits (p=0.01), guidance for internal (p=0.01), and external action (p=0.01), and perceived self-efficacy (p=0.01) in the experimental group were significantly higher than the control group. The score of perceived barriers in the experimental group decreased after training. The perceived obstacles score in the test group decreased after the training (15.2 ± 3.9 v.s 11.2 ± 3.3, (p<0.01). Conclusion: The findings of the study showed that the design and implementation of educational programs based on the constructs of the health belief model can be effective in preventing women from developing higher levels of non-alcoholic fatty liver.Keywords: non-alcoholic fatty liver, health belief model, education, women
Procedia PDF Downloads 6314731 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel
Procedia PDF Downloads 44214730 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 14114729 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases
Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning
Procedia PDF Downloads 11614728 Human Resources and Business Result: An Empirical Approach Based on RBV Theory
Authors: Xhevrie Mamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.Keywords: business results, human and social capital resources, training, RBV theory, SEM
Procedia PDF Downloads 30114727 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 29114726 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity
Procedia PDF Downloads 31414725 Hip and Valley Support Location in Wood Framing
Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward
Abstract:
Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.Keywords: wood frame, stick framing, hip, valley
Procedia PDF Downloads 12114724 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 40114723 Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory
Authors: Priyanka Bhatnagar, Malkeshkumar Patel, Joondong Kim, Joonpyo Hong
Abstract:
Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics.Keywords: transparent, photovoltaics, thermal memory, artificial skin, thermoreceptor
Procedia PDF Downloads 11414722 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 15014721 Meaning beyond Pleasure in Leisure: Comparison between Korea and France
Authors: Joane Adeclas, Yoonyoung Kim, Taekyun Hur
Abstract:
This study investigates individual’s intrinsic motivation to practice their leisure activities, as well as, how the cultural environment may influence their motivation to practice their activities. Focused on the positive psychology, the present study proposed redefinition of leisure activities considering two factors. First, leisure activities could be as any activities that provide pleasure or meaning to individuals. Second, they can be practiced alone or in groups. In fact, based on this definition, a four-dimensional model of leisure activities was developed, to measure individual’s perception of their leisure experience, based on four factors that are: personal pleasure, social pleasure, personal meaning and social meaning. Furthermore, recent studies have argued that leisure activities can be interpreted and understood differently across cultures. Therefore, the present study proposed to examine the possible role of the cultural context of individual’s leisure practices. To do so, two cultural groups (Koreans vs. French) were compared in terms of the four-dimensional model of leisure activities. Three hundred Koreans and three hundred French participants were asked to answer an online survey about their leisure activities. Participants had to respond to questions related to several aspects of leisure practices as followed: the reason why their practice their leisure activities, the reason why they fail to practice their leisure, and their obsession relate to their leisure activities. Factor analyses based on participant’s responses proposed a moderate fit of the four-dimensional model of leisure activities. Furthermore, significant cultural differences were also found. As a result, the cultural context seems to influence the reason why individuals practice their leisure activities based on our model. In fact, Koreans explained more than French, the practice of their leisure activities with social-pleasurable reasons. At a contrary, French explained more than Koreans, the practice of their leisure activities with social-meaningful reasons. The two cultural groups also significantly differ on their perception of failure. The results showed that French participants used more meaningful social factors to explain why they failed to practice their leisure activities than did Koreans participants. Finally, Koreans and French significantly differed regarding their obsession on their leisure activities. In general, French tend to have more obsession than Koreans about their leisure activities. Those results validated the four-dimensional model of leisure, as well as, the cultural differences in leisure practices. However, further studies are needed to validate this model at an individual and cultural level.Keywords: culture, leisure, meaning, pleasure
Procedia PDF Downloads 26614720 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 32414719 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 15814718 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM
Authors: Fazli Rahim Shinwari, Ulrich Dittmer
Abstract:
Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage
Procedia PDF Downloads 15614717 The Forms of Representation in Architectural Design Teaching: The Cases of Politecnico Di Milano and Faculty of Architecture of the University of Porto
Authors: Rafael Sousa Santos, Clara Pimena Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
The representative component, a determining aspect of the architect's training, has been marked by an exponential and unprecedented development. However, the multiplication of possibilities has also multiplied uncertainties about architectural design teaching, and by extension, about the very principles of architectural education. In this paper, it is intended to present the results of a research developed on the following problem: the relation between the forms of representation and the architectural design teaching-learning processes. The research had as its object the educational model of two schools – the Politecnico di Milano (POLIMI) and the Faculty of Architecture of the University of Porto (FAUP) – and was led by three main objectives: to characterize the educational model followed in both schools focused on the representative component and its role; to interpret the relation between forms of representation and the architectural design teaching-learning processes; to consider their possibilities of valorisation. Methodologically, the research was conducted according to a qualitative embedded multiple-case study design. The object – i.e., the educational model – was approached in both POLIMI and FAUP cases considering its Context and three embedded unities of analysis: the educational Purposes, Principles, and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is assumed; the architectural design classes, expressing how the model is achieved; and the students, expressing how the model is acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal the importance of the representative component in the educational model of both cases, despite the differences in its role. In POLIMI's model, representation is particularly relevant in the teaching of architectural design, while in FAUP’s model, it plays a transversal role – according to an idea of 'general training through hand drawing'. In fact, the difference between models relative to representation can be partially understood by the level of importance that each gives to hand drawing. Regarding the teaching of architectural design, the two cases are distinguished in the relation with the representative component: while in POLIMI the forms of representation serve essentially an instrumental purpose, in FAUP they tend to be considered also for their methodological dimension. It seems that the possibilities for valuing these models reside precisely in the relation between forms of representation and architectural design teaching. It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance of the educational model of POLIMI and FAUP; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the forms of representation and its relation with architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, educational models, forms of representation
Procedia PDF Downloads 12514716 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor
Authors: Abdelsalam A. Ahmed
Abstract:
Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP
Procedia PDF Downloads 64714715 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao
Abstract:
In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs
Procedia PDF Downloads 23614714 Unseen Classes: The Paradigm Shift in Machine Learning
Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan
Abstract:
Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery
Procedia PDF Downloads 177