Search results for: distributed sensor networks
1799 Hydrological Response of the Glacierised Catchment: Himalayan Perspective
Authors: Sonu Khanal, Mandira Shrestha
Abstract:
Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period.Keywords: Glacier, Glacier melt, Snowmelt, Energy balance
Procedia PDF Downloads 4581798 Chinese Speakers’ Language Attitudes Towards English Accents: Comparing Mainland and Hong Kong English Major Students’ Accent Preferences in ELF Communication
Authors: Jiaqi XU, Qingru Sun
Abstract:
Accent plays a crucial role in second language (L2) learners’ performance in the schooling context in the era of globalization, where English is adopted as a lingua franca (ELF). Previous studies found that Chinese mainland students prefer American English accents, whereas the young generations in Hong Kong prefer British accents. However, these studies neglect the non-native accents of English and fail to elaborate much about why the L2 learners differ in accent preferences between the two regions. Therefore, this research aims to bridge the research gap by 1) including both native and non-native varieties of English accents: American accent, British accent, Chinese Mandarin English accent, and Hong Kong English accent; and 2) uncovering and comparing the deeper reasons for the similar or/and different accent preferences between the Chinese mainland and Hong Kong speakers. This research designed a questionnaire including objective and subjective questions to investigate the students’ accent inclinations and the attitudes and reasons behind their linguistic choices. The questionnaire was distributed to eight participants (4 Chinese mainland students and 4 Hong Kong students) who were postgraduate students at a Hong Kong university. Based on the data collection, this research finds out one similarity and two differences between the Chinese mainland and Hong Kong students’ attitudes. The theories of identity construction and standard language ideology are further applied to analyze the reasons behind the similarities and differences and to evaluate how language attitudes intertwine with their identity construction and language ideology.Keywords: accent, language attitudes, identity construction, language ideology, ELF communication
Procedia PDF Downloads 1661797 The Localization and Function of p38α Mitogen-Activated Protein Kinase (MAPK) in Rat Oocytes
Authors: Shifu Hu, Qiong Yu, Wei Xia, Changhong Zhu
Abstract:
Background: P38α MAPK, which is a member of the canonical MAPK family, is activated in response to various extracellular stresses and plays a role in multiple cellular processes. It is well known that p38α MAPK play vital roles in oocyte maturation, but the localization and functional roles of p38α MAPK during the meiotic maturation of rat oocytes remain unknown. Study Design: In this study, western-blot and immunofluorescent staining were used to investigate the expression and subcellular localization of p38α MAPK during the meiotic maturation of rat oocytes. SB203580, a specific inhibitor of p38α MAPK, was used to study the roles of p38α MAPK in the meiotic cell cycle of rat oocytes. Results: The results found that p38α MAPK phosphorylation (p-p38α MAPK, indicative of p38α MAPK activation) was low at the germinal vesicle (GV) stage, increased 3 h after germinal vesicle breakdown (GVBD), and maintained its maximum at MI (metaphase I) or M II (metaphase II). The p-p38α MAPK mainly accumulated in the germinal vesicle and had no obvious expression in the nucleus. From GVBD to M II, p-p38α MAPK was distributed in the cytoplasm around either the chromosomes or the spindle. We used SB203580, an inhibitor of p38α MAPK, to investigate the possible functional role of p38α MAPK during rat oocyte meiotic maturation. Treatment of GV stage oocytes with 20 μM SB203580 blocked p-p38α MAPK activity, and the spindles appeared abnormal. Additionally, the rate of GVBD after 3h of culture with 20 μM SB203580 (58.8%) was significantly inhibited compared with the control (82.5%, p < 0.05), and the polar body extrusion rate after 12 h of culture with SB203580 was also significantly decreased compared with the control (40.1 vs. 73.3%, p < 0.05). Conclusions: These data indicate that p38α MAPK may play a vital role in rat oocyte meiotic maturation.Keywords: meiotic maturation, oocyte, p38α MAPK, spindle
Procedia PDF Downloads 1601796 Formal Stress Management Teaching Incorporated into the First Year of a Doctor's Practice: A Career Transition Study of British Foundation Year 1 Doctors
Authors: Edward Ridyard, Vinary Varadarajan
Abstract:
Background and Aims: The first year as a doctor in any country represents a major career transition in any physician's life. During this period, many physicians concentrate on obtaining clinical skills but may not obtain the important skills necessary to cope with stress. In this study we elucidate stress levels amongst FY1 doctors regarding the transitioning into specialty career choices, working in the NHS and anxiety about future career success. Methods: A prospective single blinded analysis of Foundation Year one (FY1) trainees using a non-mandatory online questionnaire was distributed. No exclusion criteria were applied. The only inclusion criteria was the doctor was in a full-time FY1 post and this was their first job in the UK. A total of n= 22 doctors were included in the study. After data collection, statistical analysis using chi-squared testing was applied. Results: The large majority of FY1 doctors (72.7%) already knew what specialty they wished to pursue (p=0.0001). With regards to their future careers 45.5% of FY1 doctors stated "above average" stress levels. The majority of FY1 doctors (64.3%) stated their stress levels working in the NHS were either "above average" or "high". Finally, 81.8% of respondents know colleagues who have been put off from pursuing specialties due to the stress of competition. Conclusions: A large majority of FY1 doctors already know at this early stage what area they would like to specialise in. With this in mind, a large proportion have above "average" levels of stress with regards to securing this future career path. The most worrying finding is that 64.3% of FY1s stated they had "above average" or "high" stress levels working in the NHS. We therefore recommend formal stress management education to be incorporated into the foundation programme curriculum.Keywords: stress, anxiety, junior doctor, education
Procedia PDF Downloads 3751795 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 1011794 Effect of Herbal Mineral Blend on Growth Performance of Broilers
Authors: M. Rizwan, S. Ahmad, U. Farooq, U. Mahmood, S. U. Rehman, P. Akhtar
Abstract:
This experiment was conducted to investigate the effect of supplementation of herbal and mineral mixture on growth performance of boilers. One hundred and eighty birds were randomly distributed into 6 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), commercially available herbal-mineral product FitFat™ at the rate of 150g/bag and 200g/bag, and herbal-mineral mixture at the rate of 150g/bag and herbal-mineral mixture at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of body weight gain showed significant (P < 0.05) differences in 3rd week of age (506.90g), also, feed intake showed significant (P < 0.05) results in 1st (297.22g), 3rd (936.7g) and 4th (967.8g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (1.14) and 3rd (1.74) week of age. The starter phase indicated significant (P < 0.05) differences among all treatments groups in body weight gain (902.2g), feed intake (1843.9g) and feed conversion ratio (1.78). In case of nutrient digestibility trial, results showed significant (P < 0.05) values of dry matter, crude protein, and crude fat in starter phase as 77.74%, 69.37%, and 61.18% respectively and 77.65%, 68.79% and 61.03% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of combination of herbs and mineral can increase the production performance of broilers.Keywords: herbal blend, minerals, crop filling, nutrient digestibility, broiler
Procedia PDF Downloads 2141793 Architecture for QoS Based Service Selection Using Local Approach
Authors: Gopinath Ganapathy, Chellammal Surianarayanan
Abstract:
Services are growing rapidly and generally they are aggregated into a composite service to accomplish complex business processes. There may be several services that offer the same required function of a particular task in a composite service. Hence a choice has to be made for selecting suitable services from alternative functionally similar services. Quality of Service (QoS)plays as a discriminating factor in selecting which component services should be selected to satisfy the quality requirements of a user during service composition. There are two categories of approaches for QoS based service selection, namely global and local approaches. Global approaches are known to be Non-Polynomial (NP) hard in time and offer poor scalability in large scale composition. As an alternative to global methods, local selection methods which reduce the search space by breaking up the large/complex problem of selecting services for the workflow into independent sub problems of selecting services for individual tasks are coming up. In this paper, distributed architecture for selecting services based on QoS using local selection is presented with an overview of local selection methodology. The architecture describes the core components, namely, selection manager and QoS manager needed to implement the local approach and their functions. Selection manager consists of two components namely constraint decomposer which decomposes the given global or workflow level constraints in local or task level constraints and service selector which selects appropriate service for each task with maximum utility, satisfying the corresponding local constraints. QoS manager manages the QoS information at two levels namely, service class level and individual service level. The architecture serves as an implementation model for local selection.Keywords: architecture of service selection, local method for service selection, QoS based service selection, approaches for QoS based service selection
Procedia PDF Downloads 4281792 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers
Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang
Abstract:
Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction
Procedia PDF Downloads 3341791 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3241790 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot
Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski
Abstract:
The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation
Procedia PDF Downloads 931789 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3101788 Prevalence of Human Papillomavirus in Squamous Intraepithelial Lesions and Cervical Cancer in Women of the North of Chihuahua, Mexico
Authors: Estefania Ponce-Amaya, Ana Lidia Arellano-Ortiz, Cecilia Diaz-Hernandez, Jose Alberto Lopez-Diaz, Antonio De La Mora-Covarrubias, Claudia Lucia Vargas-Requena, Mauricio Salcedo-Vargas, Florinda Jimenez-Vega
Abstract:
Cervical Cancer (CC) is the second leading cause of death among women worldwide and it had been associated with a persistent infection of human papillomavirus (HPV). The goal of the current study was to identify the prevalence of HPV infection in women with abnormal Pap smear who were attended at Dysplasia Clinic of Ciudad Juarez, Mexico. Methods: Cervical samples from 146 patients, who attended the Colposcopy Clinic at Sanitary Jurisdiction II of Cd Juarez, were collected for histopathology and molecular study. DNA was isolated for the HPV detection by Polymerase Chain Reaction (PCR) using MY09/011 and GP5/6 primers. The associated risk factors were assessed by a questionnaire. The statistical analysis was performed by ANOVA, using EpiINFO V7 software. Results: HPV infection was present in 142 patients (97.3 %). The prevalence of HPV infection was distributed in a 96% of all evaluated groups, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HISIL) and CC. We found a statistical significance (α = <0.05) between gestation and number of births as risk factors. The median values showed an ascending tend according with the lesion progression. However, CC showed a statistically significant difference with respect to the pre-carcinogenic stages. Conclusions: In these Mexican patients exists a high prevalence of HPV infection, and for that reason, we are studying the most prevalent HPV genotypes in this population.Keywords: cervical cancer, HPV, prevalence hpv, squamous intraepithelial lesion
Procedia PDF Downloads 3211787 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 1571786 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 331785 Irrigation Challenges, Climate Change Adaptation and Sustainable Water Usage in Developing Countries. A Case Study, Nigeria
Authors: Faith Eweluegim Enahoro-Ofagbe
Abstract:
Worldwide, every nation is experiencing the effects of global warming. In developing countries, due to the heavy reliance on agriculture for socioeconomic growth and security, among other things, these countries are more affected by climate change, particularly with the availability of water. Floods, droughts, rising temperatures, saltwater intrusion, groundwater depletion, and other severe environmental alterations are all brought on by climatic change. Life depends on water, a vital resource; these ecological changes affect all water use, including agriculture and household water use. Therefore adequate and adaptive water usage strategies for sustainability are essential in developing countries. Therefore, this paper investigates Nigeria's challenges due to climate change and adaptive techniques that have evolved in response to such issues to ensure water management and sustainability for irrigation and provide quality water to residents. Questionnaires were distributed to respondents in the study area, central Nigeria, for quantitative evaluation of sustainable water resource management techniques. Physicochemical analysis was done, collecting soil and water samples from several locations under investigation. Findings show that farmers use different methods, ranging from intelligent technologies to traditional strategies for water resource management. Also, farmers need to learn better water resource management techniques for sustainability. Since more residents obtain their water from privately held sources, the government should enforce legislation to ensure that private borehole construction businesses treat water sources of poor quality before the general public uses them.Keywords: developing countries, irrigation, strategies, sustainability, water resource management, water usage
Procedia PDF Downloads 1191784 Efficacy of Clickers in L2 Interaction
Authors: Ryoo Hye Jin Agnes
Abstract:
This study aims to investigate the efficacy of clickers in fostering L2 class interaction. In an L2 classroom, active learner-to-learner interactions and learner-to-teacher interactions play an important role in language acquisition. In light of this, introducing learning tools that promote such interactions would benefit L2 classroom by fostering interaction. This is because the anonymity of clickers allows learners to express their needs without the social risks associated with speaking up in the class. clickers therefore efficiently help learners express their level of understanding during the process of learning itself. This allows for an evaluative feedback loop where both learners and teachers understand the level of progress of the learners, better enabling classrooms to adapt to the learners’ needs. Eventually this tool promotes participation from learners. This, in turn, is believed to be effective in fostering classroom interaction, allowing learning to take place in a more comfortable yet vibrant way. This study is finalized by presenting the result of an experiment conducted to verify the effectiveness of this approach when teaching pragmatic aspect of Korean expressions with similar semantic functions. The learning achievement of learners in the experimental group was found higher than the learners’ in a control group. A survey was distributed to the learners, questioning them regarding the efficacy of clickers, and how it contributed to their learning in areas such as motivation, self-assessment, increasing participation, as well as giving feedback to teachers. Analyzing the data collected from the questionnaire given to the learners, the study presented data suggesting that this approach increased the scope of interactivity in the classroom, thus not only increasing participation but enhancing the type of classroom participation among learners. This participation in turn led to a marked improvement in their communicative abilities.Keywords: second language acquisition, interaction, clickers, learner response system, output from learners, learner’s cognitive process
Procedia PDF Downloads 5231783 The Role of KontraS as Track-6 on Multi Track Diplomacy for Conflict Resolution: Case Study Human Rights Crisis in Myanmar in 2015
Authors: Hardi Alunaza, Mauidhotu Rofiq
Abstract:
This research is attempted to describe the role of KontraS as track-6 on multi track diplomacy for conflict resolution in Myanmar in 2015. The researcher took the specific interest on multi track diplomacy and transnational advocacy concepts to analyze the phenomena. Furthermore, this essay is using the descriptive method with a qualitative approach. The data collection technique is literature study consisting of books, journals, and including data from the reliable website in supporting the explanation of this research. The result of this research is divided into two important points in explaining the role of KontraS in cases of human rights crisis in Myanmar. First, KontraS as human rights NGO in Indonesia was able to advocate against human rights violence that occurred in other countries by encouraging Indonesian Government to take part in the resolution of human rights issues affecting the Rohingya people in Burma. Also, KontraS take advantages of transnational advocacy networks as a form of politics and accountabilities responsibility of Non-Governmental Organization against human rights crisis in other countries.Keywords: conflict resolution, human rights crisis, multi track diplomacy, transnational advocacy
Procedia PDF Downloads 3311782 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 1331781 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors
Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber
Abstract:
The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode
Procedia PDF Downloads 4741780 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 1831779 Packet Fragmentation Caused by Encryption and Using It as a Security Method
Authors: Said Rabah Azzam, Andrew Graham
Abstract:
Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch.Keywords: fragmentation, encryption, security, switch
Procedia PDF Downloads 3391778 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone
Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar
Abstract:
Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application
Procedia PDF Downloads 741777 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 671776 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1901775 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 221774 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China
Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang
Abstract:
Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.Keywords: DLBRM, Northwestern China, spatial variation, water allocation
Procedia PDF Downloads 3061773 Design an Assessment Model of Research and Development Capabilities with the New Product Development Approach: A Case Study of Iran Khodro Company
Authors: Hamid Hanifi, Adel Azar, Alireza Booshehri
Abstract:
In order to know about the capability level of R & D units in automotive industry, it is essential that organizations always compare themselves with standard level and higher than themselves so that to be improved continuously. In this research, with respect to the importance of this issue, we have tried to present an assessment model for R & D capabilities having reviewed on new products development in automotive industry of Iran. Iran Khodro Company was selected for the case study. To this purpose, first, having a review on the literature, about 200 indicators effective in R & D capabilities and new products development were extracted. Then, of these numbers, 29 indicators which were more important were selected by industry and academia experts and the questionnaire was distributed among statistical population. Statistical population was consisted of 410 individuals in Iran Khodro Company. We used the 410 questionnaires for exploratory factor analysis and then used the data of 308 questionnaires from the same population randomly for confirmatory factor analysis. The results of exploratory factor analysis led to categorization of dimensions in 9 secondary dimensions. Naming the dimensions was done according to a literature review and the professors’ opinion. Using structural equation modeling and AMOS software, confirmatory factor analysis was conducted and ultimate model with 9 secondary dimensions was confirmed. Meanwhile, 9 secondary dimensions of this research are as follows: 1) Research and design capability, 2) Customer and market capability, 3) Technology capability, 4) Financial resources capability, 5) Organizational chart, 6) Intellectual capital capability, 7) NPD process capability, 8) Managerial capability and 9) Strategy capability.Keywords: research and development, new products development, structural equations, exploratory factor analysis, confirmatory factor analysis
Procedia PDF Downloads 3461772 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites
Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic
Abstract:
Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)
Procedia PDF Downloads 2561771 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems
Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy
Abstract:
Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.Keywords: shoulder, physiotherapy, exergames, gamification
Procedia PDF Downloads 1981770 Determination and Distribution of Formation Thickness Using Seismic and Well Data in Baga/Lake Sub-basin, Chad Basin Nigeria
Authors: Gabriel Efomeh Omolaiye, Olatunji Seminu, Jimoh Ajadi, Yusuf Ayoola Jimoh
Abstract:
The Nigerian part of the Chad Basin till date has been one of the few critically studied basins, with few published scholarly works, compared to other basins such as Niger Delta, Dahomey, etc. This work was undertaken by the integration of 3D seismic interpretations and the well data analysis of eight wells fairly distributed in block A, Baga/Lake sub-basin in Borno basin with the aim of determining the thickness of Chad, Kerri-Kerri, Fika, and Gongila Formations in the sub-basin. Da-1 well (type-well) used in this study was subdivided into stratigraphic units based on the regional stratigraphic subdivision of the Chad basin and was later correlated with other wells using similarity of observed log responses. The combined density and sonic logs were used to generate synthetic seismograms for seismic to well ties. Five horizons were mapped, representing the tops of the formations on the 3D seismic data covering the block; average velocity function with maximum error/residual of 0.48% was adopted in the time to depth conversion of all the generated maps. There is a general thickening of sediments from the west to the east, and the estimated thicknesses of the various formations in the Baga/Lake sub-basin are Chad Formation (400-750 m), Kerri-Kerri Formation (300-1200 m), Fika Formation (300-2200 m) and Gongila Formation (100-1300 m). The thickness of the Bima Formation could not be established because the deepest well (Da-1) terminates within the formation. This is a modification to the previous and widely referenced studies of over forty decades that based the estimation of formation thickness within the study area on the observed outcrops at different locations and the use of few well data.Keywords: Baga/Lake sub-basin, Chad basin, formation thickness, seismic, velocity
Procedia PDF Downloads 193