Search results for: hourly load demand
1782 An Evaluation of Existing Models to Smart Cities Development Around the World
Authors: Aqsa Mehmood, Muhammad Ali Tahir, Hafiz Syed Hamid Arshad, Salman Atif, Ejaz Hussain, Gavin McArdle, Michela Bertolotto
Abstract:
The evolution of smart cities in recent years has been developing dramatically. As urbanization increases, the demand for big data analytics and digital technology-based solutions for cities has also increased. Many cities around the world have now planned to focus on smart cities. To obtain a systematic overview of smart city models, we carried out a bibliometric analysis in the context of seven regions of the world to understand the main dimensions that characterize smart cities. This paper analyses articles published between 2017 and 2021 that were captured from Web of Science and Scopus. Specifically, we investigated publication trends to highlight the research gaps and current developments in smart cities research. Our survey provides helpful insights into the geographical distribution of smart city publications with respect to regions of the world and explores the current key topics relevant to smart cities and the co-occurrences of keywords used in these publications. A systematic literature review and keyword analysis were performed. The results have focused on identifying future directions in smart city development, including smart citizens, ISO standards, Open Geospatial Consortium and the sustainability factor of smart cities. This article will assist researchers and urban planners in understanding the latest trends in research and highlight the aspects which need further attention.Keywords: smart cities, sustainability, regions, urban development, VOS viewer, research trends
Procedia PDF Downloads 1151781 An Efficient Traceability Mechanism in the Audited Cloud Data Storage
Authors: Ramya P, Lino Abraham Varghese, S. Bose
Abstract:
By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.Keywords: data integrity, dynamic group, group signature, public auditing
Procedia PDF Downloads 3911780 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints
Procedia PDF Downloads 2311779 Sustainability and Energy-Efficiency in Buildings: A review
Authors: Medya Fathi
Abstract:
Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.Keywords: sustainability, energy performance, energy efficiency, buildings, review
Procedia PDF Downloads 691778 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 641777 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1041776 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants
Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey
Abstract:
The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model
Procedia PDF Downloads 1411775 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic
Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich
Abstract:
Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system
Procedia PDF Downloads 2661774 Identifying and Review of Effective Factors on Marketing Relationship In National Iranian Drilling Company from Managers’ View
Authors: Hoda Ghorbani
Abstract:
Today, many markets are matured and faced by a congested competition and amount of supply that is quite greater than demand. With respect to such modifications, organizations shall make themselves more equipped beforehand and ready to tackle with their rivals. In this regard, Relationship Marketing tries to lower the cost for attracting new customers by establishment and maintenance long run relations with the current customers and by which they try to increase corporative profitability. Consequently, identifying of relationship marketing and its effective factors is an essential element for maintenance of market and improvement of corporative competition potential. The present study deals with identifying the effective factors on marketing relationship in National Iranian Drilling Company (NIDC) from managers’ point of view. Methodology of this study is of descriptive- survey type. In addition to an extensive review on secondary sources and interview with experienced members in NIDC, researcher identified the related factors and distributed a questionnaire, including 31 questions, among 144 participants from corporative managers and first-rank principals. After gathering information, the related data have been analyzed by using binomial test as well as Binomial Analytic Hierarchy Process (AHP) of pair-wise comparisons. Study results showed that some variable like communication, commitment, Conflict Management and trust have affected on relationship marketing based on their order preference.Keywords: marketing relationship, trust, commitment, communication, conflict management
Procedia PDF Downloads 3701773 Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries
Authors: E. K. Hardwick, L. B. Siwela, J. G. Falconer, M. E. Mathibela, W. Rolfe
Abstract:
Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange.Keywords: cobalt, ion exchange, leachate formation, lithium-ion batteries, manganese, nickel
Procedia PDF Downloads 951772 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 911771 The Influence of Cellulose Nanocrystal (CNC) on the Mechanical Properties and Workability of Oil Well Cement
Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile
Abstract:
Well cementing is one of the most crucial and important steps in any well completion. Oil well cement paste is employed to fill the annulus between the casing string and the well bore. However, since the cementing process takes place at the end of the drilling process, a satisfying and acceptable job may not be performed. During the cementing process, the cement paste must be pumped in the annulus, therefore concerns arise both in the workability and the flowability associated with the paste. On the other hand, the cement paste around the casing must demonstrate the adequate compressive strength in order to provide a suitable mechanical support for the casing and desirably prevent collapse of the formation. In this experimental study, the influence of cellulose nanocrystal particles on the workability, flowability and also mechanical properties of oil well cement paste has been investigated. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Two method of testing were considered to understand the flow behavior of the samples: (1) a mini slump test and (2) a conventional flow table test were utilized to study the flowability of the cementitious paste under gravity and also under applied load (number of blows for the flow table test). Furthermore, the mechanical properties of hardened oil well cement paste dosed with CNC were assessed by performing a compression test on cylindrical specimens. Based on the findings in this study, the addition of CNC led to developing a more viscous cement paste with a reduced spread diameter. Also, by introducing a very small dosage of CNC particles (as an additive), a significant increase in the compressive strength of the oil well cement paste was observed.Keywords: cellulose nanocrystal, cement workability, mechanical properties, oil well cement
Procedia PDF Downloads 2591770 Biohydrogen Production Derived from Banana Pseudo Stem of Agricultural Residues by Dark Fermentation
Authors: Kholik
Abstract:
Nowadays, the demand of renewable energy in general is increasing due to the crisis of fossil fuels. Biohydrogen is an alternative fuel with zero emission derived from renewable resources such as banana pseudo stem of agricultural residues. Banana plant can be easily found in tropical and subtropical areas, so the resource is abundant and readily available as a biohydrogen substrate. Banana pseudo stem has not been utilised as a resource or substrate of biohydrogen production and it mainly contains 45-65% cellulose (α-cellulose), 5-15% hemicellulose and 20-30% Lignin, which indicates that banana pseudo stem will be renewable, sustainable and promising resource as lignocellulosic biomass. In this research, biohydrogen is derived from banana pseudo stem by dark fermentation. Dark fermentation is the most suitable approach for practical biohydrogen production from organic solid wastes. The process has several advantages including a fast reaction rate, no need of light, and a smaller footprint. 321 million metric tonnes banana pseudo stem of 428 million metric tonnes banana plantation residues in worldwide for 2013 and 22.5 million metric tonnes banana pseudo stem of 30 million metric tonnes banana plantation residues in Indonesia for 2015 will be able to generate 810.60 million tonne mol H2 and 56.819 million tonne mol H2, respectively. In this paper, we will show that the banana pseudo stem is the renewable, sustainable and promising resource to be utilised and to produce biohydrogen as energy generation with high yield and high contain of cellulose in comparison with the other substrates.Keywords: banana pseudo stem, biohydrogen, dark fermentation, lignocellulosic
Procedia PDF Downloads 3501769 Seismic Evaluation of Connected and Disconnected Piled Raft Foundations
Authors: Ali Fallah Yeznabad, Mohammad H. Baziar, Alireza Saedi Azizkandi
Abstract:
Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation.Keywords: Piled Rafts (PR), Disconnected Piled Rafts (DPR), dynamic loading, shaking table, seismic performance
Procedia PDF Downloads 4281768 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 891767 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste
Authors: İ. Çelik, Goksel Demirer
Abstract:
Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment
Procedia PDF Downloads 2131766 Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels
Authors: Velázquez Alejandro, Pradhan Sujan, Yoon Rokhyun, Sanada Yasushi
Abstract:
The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill.Keywords: analytical model, multi spring, performance evaluation, reinforced concrete, rocking mechanism, wooden wall
Procedia PDF Downloads 1041765 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress
Procedia PDF Downloads 941764 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2061763 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust
Authors: Hassan Gholibeigian, Kazem Gholibeigian
Abstract:
In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour
Procedia PDF Downloads 2741762 Amelioration of Over-Expression of bax, Nrf2 and NFК–β in Nano-Sized Titanium Dioxide-Intoxicated Mice by Potent Antioxidants
Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry
Abstract:
The increasing use of nanomaterials in consumer and industrial products has aroused global concern regarding their fate in biological systems resulting in demand for parallel risk assessment. The objective of this study is investigating either the effect of individual or combined doses of idebenone, carnosine and vitamin E on amelioration of some biochemical indices of nano sized titanium dioxide (TiO2 NPS) induced metabolic disorders in mice liver. TiO2-NPS was administered in an oral dose of 150 mg/kg for consecutive 14 days followed by oral daily doses of the aforementioned antioxidants for 1 month. TiO2-NPS induced a significant elevation in serum level of ALT and AST, hepatic inflammatory markers (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover, mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation-2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down-regulation in the antiapoptotic factor (bcl2) level. In conclusion, idebenone, carnosine and vitamin E ameliorated the deviated parameters with a variable degree with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.Keywords: idebenone, carnosine, vitamin E, TiO2 NPS, caspase-3, NrF2, NF-KB
Procedia PDF Downloads 3841761 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier
Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das
Abstract:
For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification
Procedia PDF Downloads 1051760 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite
Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei
Abstract:
Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria
Procedia PDF Downloads 1481759 An Overview of Electronic Waste as Aggregate in Concrete
Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan
Abstract:
Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.Keywords: dumping, electronic waste, landfill, toxic chemicals
Procedia PDF Downloads 1681758 AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System
Authors: Sinwook Park, Gilad Yossifon
Abstract:
The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length.Keywords: AC electrokinetics, microchannel, concentration-polarization, bipolar current
Procedia PDF Downloads 4971757 Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding
Authors: Kulwinder Singh Mann, Manmohan Singh Heer, Asha Rani
Abstract:
The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source.Keywords: buildup factor, clay bricks, fire bricks, nuclear wastage management, radiation protective double layered slabs
Procedia PDF Downloads 4041756 Preliminary Studies of Transient Stability for the 380 kV Connection West-Central of Saudi Electricity Company
Authors: S. Raja Mohamed, M. H Shwehdi, D. Devaraj
Abstract:
This paper is to present and discuss the new planned 380 kV transmission line performance under steady and transient states. Dynamic modeling and analysis of such inter-tie, which is, proposed to transfer energy from west to south and vice versa will be demonstrated and discussed. The west-central-south inter-tie links Al-Aula-Zaba-Tabuk-Tubajal-Jawf-Hail. It is essential to investigate the transient over-voltage to assure steady and stable transmission over such inter-tie. Saudi Electricity Company (SEC) has been improving its grid to make the whole country as an interconnected system. Already east, central and west were interconnected, yet mostly each is fed with its local generation. The SEC is planning to establish many inter-ties to strengthen the transient stability of its grid. The paper studies one of the important links of 380 kV, 220 km between Tabouk and Tubarjal, which is a step towards connecting the West with the South region. Modeling and analysis using some softwares will be utilized under different scenarios. Adoption of methods to stabilize and increase its power transmission are also discussed. Improvement of power system transients has been controlled by FACTS elements such the Static Var Compensators (SVC) receiving a wide interest since many technical studies have proven their effects on damping system oscillations and stability enhancement. Illustrations of the transient at each main generating or load bus will be checked in all inter-tie links. A brief review of possible means to solve the transient over-voltage problem using different FACTS element modeling will be discussed.Keywords: transient stability, static var compensator, central-west interconnected system, damping controller, Saudi Electricity Company
Procedia PDF Downloads 6071755 Augmented Reality: New Relations with the Architectural Heritage Education
Authors: Carla Maria Furuno Rimkus
Abstract:
The technologies related to virtual reality and augmented reality in combination with mobile technologies, are being more consolidated and used each day. The increasing technological availability along with the decrease of their acquisition and maintenance costs, have favored the expansion of its use in the field of historic heritage. In this context it is focused, in this article, on the potential of mobile applications in the dissemination of the architectural heritage, using the technology of Augmented Reality. From this perspective approach, it is discussed about the process of producing an application for mobile devices on the Android platform, which combines the technologies of geometric modeling with augmented reality (AR) and access to interactive multimedia contents with cultural, social and historic information of the historic building that we take as the object of study: a block with a set of buildings built in the XVIII century, known as "Quarteirão dos Trapiches", which was modeled in 3D, coated with the original texture of its facades and displayed on AR. From this perspective approach, this paper discusses about methodological aspects of the development of this application regarding to the process and the project development tools, and presents our considerations on methodological aspects of developing an application for the Android system, focused on the dissemination of the architectural heritage, in order to encourage the tourist potential of the city in a sustainable way and to contribute to develop the digital documentation of the heritage of the city, meeting a demand of tourists visiting the city and the professionals who work in the preservation and restoration of it, consisting of architects, historians, archaeologists, museum specialists, among others.Keywords: augmented reality, architectural heritage, geometric modeling, mobile applications
Procedia PDF Downloads 4761754 Green Revolution and Reckless Use of Water and Its Implication on Climate Change Leading to Desertification: Situation of Karnataka, India
Authors: Arun Das
Abstract:
One of the basic objectives of Independent India five decades ago was to meet the increasing demand for food to its growing population. Self-sufficiency was accomplished towards food production and it was attained through launching green revolution program. The green revolution repercussions were not realized at that moment. Many projects were undertaken. Especially, major and minor irrigation projects were executed to harness the river water in the dry land regions of Karnataka. In the elevated topographical lands, extraction of underground water was a solace given by the government to protect the interest of the dry land farmers whose land did not come under the command area. Free borewell digging, pump sets, and electricity were provided. Thus, the self-sufficiency was achieved. Contrary to this, the Continuous long-term extraction of water for agriculture from bore well and in the irrigated tracks has lead to two-way effect such as soil leeching (Alkalinity and Salinity), secondly, depleted underground water to incredible deeps has pushed the natural process to an un-reparable damage which in turn the nature lost to support even a tiny plants like grass to grow, discouraging human and animal habitation, Both the process is silently turning southwestern, central, northeastern and north western regions of Karnataka into desert. The grave situation of Karnataka green revolution is addressed in this paper to alert reckless use of water and also some of the suggestions are recommended based on the ground information.Keywords: alkalinity, desertification, green revolution, salinity, water
Procedia PDF Downloads 2821753 A Breakthrough Improvement Brought by Taxi-Calling APPs for Taxi Operation Level
Authors: Yuan-Lin Liu, Ye Li, Tian Xia
Abstract:
Taxi-calling APPs have been used widely, while brought both benefits and a variety of issues for the taxi market. Many countries do not know whether the benefits are remarkable than the issues or not. This paper established a comparison between the basic scenario (2009-2012) and a taxi-calling software usage scenario (2012-2015) to explain the impact of taxi-calling APPs. The impacts of taxi-calling APPs illustrated by the comparison results are: 1) The supply and demand distribution is more balanced, extending from the city center to the suburb. The availability of taxi service has been improved in low density areas, thin market attribute has also been improved; 2)The ratio of short distance taxi trip decreased, long distance service increased, the utilization of mileage increased, and the rate of empty decreased; 3) The popularity of taxi-calling APPs was able to reduce the average empty distance, cruise time, empty mileage rate and average times of loading passengers, can also enhance the average operating speed, improve the taxi operating level, and reduce social cost although there are some disadvantages. This paper argues that the taxi industry and government can establish an integrated third-party credit information platform based on credit evaluated by the data of the drivers’ driving behaviors to supervise the drivers. Taxi-calling APPs under fully covered supervision in the mobile Internet environment will become a new trend.Keywords: taxi, taxi-calling APPs, credit, scenario comparison
Procedia PDF Downloads 253