Search results for: violation data discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25832

Search results for: violation data discovery

21902 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 411
21901 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 430
21900 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis

Authors: Ailene B. Anonuevo

Abstract:

The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.

Keywords: IP learners, learning landscape, school climate, quality of life

Procedia PDF Downloads 227
21899 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China

Authors: Jianzhou Ni, Hua Fan

Abstract:

It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.

Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements

Procedia PDF Downloads 90
21898 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 495
21897 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case

Authors: Raziyeh Shamsi

Abstract:

In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.

Keywords: DEA, MOLP, full fuzzy, target

Procedia PDF Downloads 304
21896 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 61
21895 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 516
21894 Retrospective Data Analysis of Penetrating Injuries Admitted to Jigme Dorji Wangchuck National Referral Hospital (JDWNRH), Thimphu, Bhutan, Due to Traditional Sports over a Period of 3 Years

Authors: Sonam Kelzang

Abstract:

Background: Penetrating injuries as a result of traditional sports (Archery and Khuru) are commonly seen in Bhutan. To our knowledge, there is no study carried out looking into the data of penetrating injuries due to traditional sports. Aim: This is a retrospective analysis of cases of penetrating injuries as a result of traditional sports admitted to JDWNRH over the last 3 years to draw an inference on the pattern of injury and associated morbidity and mortality. Method: Data on penetrating injuries related to traditional sports (Archery and Khuru) were collected and reviewed over the period of 3 years. Assault cases were excluded. For each year we analysed age, sex, parts of the body affected, agent of injury and whether admission was required or not. Results: Out of the total 44 victims of penetrating injury by traditional sports (Archery and Khuru) between 2013 and 2015 (average of 15 cases of penetrating injuries per year). Eighty-five percent were male and 15% were female. Their age ranged from 4 yrs to 62 years. Sixty-one percent of the victims were in the working age group of 19-58 years; 30% of the victims were referred from various district hospitals; 38% of the victims needed admission; 42 % of the victims suffered injury to the head; and 54% of the injuries were caused by Khuru. Conclusion: Penetrating injuries due to traditional sports admitted to JDWNRH, Thimphu, remained same over the three years period despite safety regulations in place. Although there were no deaths during the last three years, morbidity still remains high.

Keywords: archery, Bhutan, Khuru, darts

Procedia PDF Downloads 166
21893 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems

Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur

Abstract:

The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.

Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling

Procedia PDF Downloads 557
21892 A Survey on Genetic Algorithm for Intrusion Detection System

Authors: Prikhil Agrawal, N. Priyanka

Abstract:

With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.

Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security

Procedia PDF Downloads 301
21891 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 431
21890 Satisfaction of the Training at ASEAN Camp: E-Learning Knowledge and Application at Chantanaburi Province, Thailand

Authors: Sinchai Poolklai

Abstract:

The purpose of this research paper was aimed to examine the level of satisfaction of the faculty members who participated in the ASEAN camp, Chantaburi, Thailand. The population of this study included all the faculty members of Suan Sunandha Rajabhat University who participated in the training and activities of the ASEAN camp during March, 2014. Among a total of 200 faculty members who answered the questionnaire, the data was complied by using SPSS program. Percentage, mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.37, and standard deviation was 0.7810. Moreover, the mean average can be used to rank the level of satisfaction from each of the following factors: lower cost, less time consuming, faster delivery, more effective learning, and lower environment impact.

Keywords: ASEAN camp, e-learning, satisfaction, application

Procedia PDF Downloads 392
21889 Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company

Authors: Abdul Sattar Jamali, Imdad Ali Memon, Maqsood Ahmed Memon

Abstract:

Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section.

Keywords: check sheet, cause and effect diagram, control chart, histogram

Procedia PDF Downloads 329
21888 WormHex: Evidence Retrieval Tool of Social Media from Volatile Memory

Authors: Norah Almubairik, Wadha Almattar, Amani Alqarni

Abstract:

Social media applications are increasingly being used in our everyday communications. These applications utilise end-to-end encryption mechanisms, which make them suitable tools for criminals to exchange messages. These messages are preserved in the volatile memory until the device is restarted. Therefore, volatile forensics has become an important branch of digital forensics. In this study, the WormHex tool was developed to inspect the memory dump files of Windows and Mac-based workstations. The tool supports digital investigators to extract valuable data written in Arabic and English through web-based WhatsApp and Twitter applications. The results verify that social media applications write their data into the memory regardless of the operating system running the application, with there being no major differences between Windows and Mac.

Keywords: volatile memory, REGEX, digital forensics, memory acquisition

Procedia PDF Downloads 195
21887 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 76
21886 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: classifier ensemble, breast cancer survivability, data mining, SEER

Procedia PDF Downloads 331
21885 Pre-Service Teachers’ Opinions on Disabled People

Authors: Sinem Toraman, Aysun Öztuna Kaplan, Hatice Mertoğlu, Esra Macaroğlu Akgül

Abstract:

This study aims to examine pre-service teachers’ opinions on disabled people taking into consideration various variables. The participants of the study are composed of 170 pre-service teachers being 1st year students of different branches at Education Department of Yıldız Technical, Yeditepe, Marmara and Sakarya Universities. Data of the research was collected in 2013-2014 fall term. This study was designed as a phenomenological study appropriately qualitative research paradigm. Pre-service teachers’ opinions about disabled people were examined in this study, open ended question form which was prepared by researcher and focus group interview techniques were used as data collection tool. The study presents pre-service teachers’ opinions about disabled people which were mentioned, and suggestions about teacher education.

Keywords: pre-service teachers, disabled people, teacher education, teachers' opinions

Procedia PDF Downloads 462
21884 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 163
21883 Rabies Surveillance Data Analysis in Addis Ababa, Ethiopia during 2012/13: Retrospective Cross Sectional Study

Authors: Fantu Lombamo Untiso, Sylvia Murphy, Emily Pieracci

Abstract:

Background: Rabies is a highly fatal viral disease of all warm-blooded animals including human globally. However, effective rabies control program still remains to be a reality and needs to be strengthened. Objective: Reviewing of recorded data and analyzing it to generate information on the status of rabies in Addis Ababa in the year 2012/13. Methods: A retrospective data were used from the Ethiopian Public Health Institute rabies case record book registered in the year 2012/13. Results: Among 1357 suspected rabid animals clinically examined; only 8.84% were positive for rabies. Out of 216 animal brains investigated in the laboratory with Fluorescent Antibody Technique, 55.5% were confirmed rabies positive. Among the laboratory confirmed positive rabies cases, high percentage of the animals came from Yeka (20%) and lower number from Kirkos subcity (3.3%). Out of 1149 humans who came to the institute seeking anti-rabies post-exposure prophylaxis, 85.65% and 7.87% of them were exposed to suspected dogs and cats respectively. 3 human deaths due to rabies were reported in the year after exposure to dog bite of unknown vaccination status. Conclusion: The principal vector of rabies in Addis Ababa is dog. Effective rabies management and control based on confirmed cases and mass-immunization and control of stray dog populations is recommended.

Keywords: Addis Ababa, exposure, rabies, surveillance

Procedia PDF Downloads 183
21882 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 503
21881 Applying Critical Realism to Qualitative Social Work Research: A Critical Realist Approach for Social Work Thematic Analysis Method

Authors: Lynne Soon-Chean Park

Abstract:

Critical Realism (CR) has emerged as an alternative to both the positivist and constructivist perspectives that have long dominated social work research. By unpacking the epistemic weakness of two dogmatic perspectives, CR provides a useful philosophical approach that incorporates the ontological objectivist and subjectivist stance. The CR perspective suggests an alternative approach for social work researchers who have long been looking to engage in the complex interplay between perceived reality at the empirical level and the objective reality that lies behind the empirical event as a causal mechanism. However, despite the usefulness of CR in informing social work research, little practical guidance is available about how CR can inform methodological considerations in social work research studies. This presentation aims to provide a detailed description of CR-informed thematic analysis by drawing examples from a social work doctoral research of Korean migrants’ experiences and understanding of trust associated with their settlement experience in New Zealand. Because of its theoretical flexibility and accessibility as a qualitative analysis method, thematic analysis can be applied as a method that works both to search for the demi-regularities of the collected data and to identify the causal mechanisms that lay behind the empirical data. In so doing, this presentation seeks to provide a concrete and detailed exemplar for social work researchers wishing to employ CR in their qualitative thematic analysis process.

Keywords: critical Realism, data analysis, epistemology, research methodology, social work research, thematic analysis

Procedia PDF Downloads 214
21880 LaPEA: Language for Preprocessing of Edge Applications in Smart Factory

Authors: Masaki Sakai, Tsuyoshi Nakajima, Kazuya Takahashi

Abstract:

In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing.

Keywords: edge application framework, edgecross, preprocessing language, smart factory

Procedia PDF Downloads 150
21879 Key Factors for Stakeholder Engagement and Sustainable Development

Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng

Abstract:

The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.

Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility

Procedia PDF Downloads 515
21878 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 190
21877 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework

Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai

Abstract:

A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.

Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model

Procedia PDF Downloads 459
21876 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro

Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic

Abstract:

As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.

Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis

Procedia PDF Downloads 205
21875 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria

Authors: Jamila Garba Audu, Shehu Usman Hassan

Abstract:

The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.

Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance

Procedia PDF Downloads 250
21874 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 105
21873 Results of Twenty Years of Laparoscopic Hernia Repair Surgeries

Authors: Arun Prasad

Abstract:

Introduction: Laparoscopic surgery of hernia started in early 1990 and has had a mixed acceptance across the world, unlike laparoscopic cholecystectomy that has become a gold standard. Laparoscopic hernia repair claims to have less pain, less recurrence, and less wound infection compared to open hernia repair leading to early recovery and return to work. Materials and Methods: Laparoscopic hernia repair has been done in 2100 patients from 1995 till now with a follow-up data of 1350 patients. Data was analysed for results and satisfaction. Results: There is a recurrence rate of 0.1%. Early complications include bleeding, trocar injury and nerve pain. Late complications were rare. Conclusion: Laparoscopic inguinal hernia repair has a steep learning curve but after that the results and patient satisfaction are very good. It should be the procedure of choice in all bilateral and recurrent hernias.

Keywords: laparoscopy, hernia, mesh, surgery

Procedia PDF Downloads 255