Search results for: embedded network
1767 Distributed Multi-Agent Based Approach on Intelligent Transportation Network
Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar
Abstract:
With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of humans, vehicle, roadside infrastructure, and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the report proposes a distributed multi-agent C-ITS. The system consists of Roadside Sub-system, Vehicle Sub-system, and Personal Sub-system. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.Keywords: distributed system, artificial intelligence, multi-agent, cooperative intelligent transportation system
Procedia PDF Downloads 2141766 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem
Procedia PDF Downloads 721765 'Naming, Blaming, Shaming': Sexual Assault Survivors' Perceptions of the Practice of Shaming
Authors: Anat Peleg, Hadar Dancig-Rosenberg
Abstract:
This interdisciplinary study, to our knowledge the first in this field, is located on the intersection of victimology-law and society-and media literature, and it corresponds both with feminist writing and with cyber literature which explores the techno-social sphere. It depicts the multifaceted dimensions of shaming in the eyes of the survivors through the following research questions: What are the motivations of sexual-assault survivors to publicize the assailants' identity or to refrain from this practice? Is shaming on Facebook perceived by sexual–assault victims as a substitute for the CJS or as a new form of social activism? What positive and negative consequences do survivors experience as a result of shaming their assailants online? The study draws on in-depth semi-structured interviews which we have conducted between 2016-2018 with 20 sexual-assaults survivors who exposed themselves on Facebook. They were sexually attacked in various forms: six participants reported that they had been raped when they were minors; eight women reported that they had been raped as adults; three reported that they had been victims of an indecent act and three reported that they had been harassed either in their workplace or in the public sphere. Most of our interviewees (12) reported to the police and were involved in criminal procedures. More than half of the survivors (11) disclosed the identity of their attackers online. The vocabularies of motives that have emerged from the thematic analysis of the interviews with the survivors consist of both social and personal motivations for using the practice of shaming online. Some survivors maintain that the use of shaming derives from the decline in the public trust in the criminal justice system. It reflects demand for accountability and justice and serves also as a practice of warning other potential victims of the assailants. Other survivors assert that shaming people in a position of privilege is meant to fulfill the public right to know who these privileged men really are. However, these aforementioned moral and practical justifications of the practice of shaming are often mitigated by fear from the attackers' physical or legal actions in response to their allegations. Some interviewees who are feminist activists argue that the practice of shaming perpetuates the social ancient tendency to define women by labels linking them to the men who attacked them, instead of being defined by their own life complexities. The variety of motivations to adopt or resent the practice of shaming by sexual assault victims presented in our study appear to refute the prevailing intuitive stereotype that shaming is an irrational act of revenge, and denote its rationality. The role of social media as an arena for seeking informal justice raises questions about the new power relations created between victims, assailants, the community and the State, outside the formal criminal justice system. At the same time, the survivors' narratives also uncover the risks and pitfalls embedded within the online sphere for sexual assault survivors.Keywords: criminal justice, gender, Facebook, sexual-assaults
Procedia PDF Downloads 1121764 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 911763 3D Electromagnetic Mapping of the Signal Strength in Long Term Evolution Technology in the Livestock Department of ESPOCH
Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres
Abstract:
This article focuses on the 3D electromagnetic mapping of the intensity of the signal received by a mobile antenna within the open areas of the Department of Livestock of the Escuela Superior Politecnica de Chimborazo (ESPOCH), located in the city of Riobamba, Ecuador. The transmitting antenna belongs to the mobile telephone company ”TUENTI”, and is analyzed in the 2 GHz bands, operating at a frequency of 1940 MHz, using Long Term Evolution (LTE). Power signal strength data in the area were measured empirically using the ”Network Cell Info” application. A total of 170 samples were collected, distributed in 19 concentric circles around the base station. 3 campaigns were carried out at the same time, with similar traffic, and average values were obtained at each point, which varies between -65.33 dBm to -101.67 dBm. Also, the two virtualization software used are Sketchup and Unreal. Finally, the virtualized environment was visualized through virtual reality using Oculus 3D glasses, where the power levels are displayed according to a range of powers.Keywords: reception power, LTE technology, virtualization, virtual reality, power levels
Procedia PDF Downloads 901762 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 751761 Electret: A Solution of Partial Discharge in High Voltage Applications
Authors: Farhina Haque, Chanyeop Park
Abstract:
The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.Keywords: electrets, high power density, partial discharge, triode corona discharge
Procedia PDF Downloads 2031760 A Web-Based Self-Learning Grammar for Spoken Language Understanding
Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno
Abstract:
One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition
Procedia PDF Downloads 3381759 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1321758 Relocation of the Air Quality Monitoring Stations Network for Aburrá Valley Based on Local Climatic Zones
Authors: Carmen E. Zapata, José F. Jiménez, Mauricio Ramiréz, Natalia A. Cano
Abstract:
The majority of the urban areas in Latin America face the challenges associated with city planning and development problems, attributed to human, technical, and economical factors; therefore, we cannot ignore the issues related to climate change because the city modifies the natural landscape in a significant way transforming the radiation balance and heat content in the urbanized areas. These modifications provoke changes in the temperature distribution known as “the heat island effect”. According to this phenomenon, we have the need to conceive the urban planning based on climatological patterns that will assure its sustainable functioning, including the particularities of the climate variability. In the present study, it is identified the Local Climate Zones (LCZ) in the Metropolitan Area of the Aburrá Valley (Colombia) with the objective of relocate the air quality monitoring stations as a partial solution to the problem of how to measure representative air quality levels in a city for a local scale, but with instruments that measure in the microscale.Keywords: air quality, monitoring, local climatic zones, valley, monitoring stations
Procedia PDF Downloads 2721757 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes
Authors: Zahra Khan
Abstract:
Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.Keywords: gelatin, hydrogels, flexible materials, SERS
Procedia PDF Downloads 1121756 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 2331755 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1261754 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2311753 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective
Authors: Amy Y. Wang, Eko L. Yi
Abstract:
Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.Keywords: employee voice, organizational politics, social information processing, workplace ostracism
Procedia PDF Downloads 1401752 Investigating the Trends in Tourism and Hospitality Industry in Nigeria at Centenary
Authors: Pius Agbebi Alaba
Abstract:
The study emphasized on the effects of contemporary and prospect trends on the development of Hospitality and Tourism in Nigeria. Specifically, the study examined globalization, safety and security, diversity, service, technology, demographic changes and price–value as contemporary trends while prospect trends such as green and Eco-lodgings, Development of mega hotels, Boutique hotels, Intelligent hotels with advanced technology using the guest’s virtual fingerprint in order to perform all the operations, increasing employee salaries in order retain the existing Staff, More emphasis on the internet and technology, Guests’ virtual and physical social network were equally examined. The methodology for the study involved review of existing related study, books, journal and internet. The findings emanated from the exercise showed clearly that the impact of both trends on the development of Hospitality and Tourism in Nigeria would bring about rapid positive transformation of her socio-economic, political and cultural environment. The implication of the study is that it will prepare both private and corporate individuals in hospitality and tourism business for the challenges inherent in both trends.Keywords: hospitality and tourism, Nigeria's centenary, trends, implications
Procedia PDF Downloads 3351751 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite
Procedia PDF Downloads 1291750 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance
Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow
Abstract:
The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation
Procedia PDF Downloads 2891749 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya
Authors: Nadjet Brahmia
Abstract:
The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.Keywords: mobility, on-demand transport, public transport collective, transport system
Procedia PDF Downloads 3571748 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 621747 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management
Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix
Abstract:
A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings
Procedia PDF Downloads 3701746 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1381745 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic
Procedia PDF Downloads 4861744 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators
Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph
Abstract:
A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant
Procedia PDF Downloads 4121743 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2721742 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling
Procedia PDF Downloads 4251741 Multi-Modal Visualization of Working Instructions for Assembly Operations
Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger
Abstract:
Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization
Procedia PDF Downloads 1651740 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA
Procedia PDF Downloads 3981739 Modulation of Receptor-Activation Due to Hydrogen Bond Formation
Authors: Sourav Ray, Christoph Stein, Marcus Weber
Abstract:
A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation
Procedia PDF Downloads 1751738 Exploring Ugliness as an Aesthetic Theme in Contemporary Chinese Literature through Analyzing Five Dragons, Protagonist in Rice by Xianfeng Writer Su Tong
Authors: Ku Yu Yiu
Abstract:
Writers have included the ugly in their works for centuries, but ugliness has often served merely as a contrast to bring out the beautiful, not having emerged as an independent aesthetic category until recent history. In the 1980s, China was going through a series of changes and transformations; the wounds and scars from the Cultural Revolution, a freer literary atmosphere then, and the introduction of Western thoughts into China gave rise to a trend of penning the ugly and the repulsive among writers. Such trend of utilizing 'Ugliness' as a theme of writing in Chinese literature is especially observed among Xianfeng writers (China’s pioneer writers or avant-garde writers). As a prominent Xianfeng writer, Su Tong (1963-) also incorporates ugliness into his novels: shoddy environment, degenerate and ruthless society, distorted and decadent humanity are part and parcel of his deliberate efforts of exploring and depicting the ugly aspects of the world. His full-length novel Rice, staging the appalling protagonist Five Dragons, is a prime example. In fact, all characters in Rice exhibit Ugliness but Five Dragons’s turning into a figure of ugly spite is the most thorough and complete, making Rice a masterpiece of Su Tong’s art in projecting the Ugliness embedded in society and human nature. Approaching Rice from the angle of the aesthetics of the Ugly and selecting Five Dragons as the subject of close reading and analysis, this paper offers insights into both Su Tong’s distinct style of foregrounding and unfolding Ugliness in his novel and the workings of such text when he deploys the Ugly as a center component of his writing. In addition to citing from the discussion of Rice by literary critics and the author himself, this paper also presents textual evidence and analyzes the imageries/motifs and calculated vocabulary/narration employed by Su Tong to illustrate how Five Dragons' extreme behaviors and psychological states are integral to the plot and ultimately to the manifestation of ugliness as the novel’s theme. This study reveals that although the psyche and doings of Five Dragons and other 'ugly' characters are, as the author once stated, imagined products of the writer Su Tong himself, Rice sheds light onto the ugly aspects of life in China in 1920s-30s. Three aspects of Ugliness are identified and discussed in the paper. Lastly, this paper also suggests some effects of Su Tong’s exploration of Ugliness in Rice, proposing that the portrayal of Ugliness per se is not the ends of Su Tong’s mastery of the aesthetics of the Ugly but rather a means to making his writing transcend from provoking spontaneous moral judgment in readers on the doings of Five Dragons to prompting readers to ponder on philosophical questions such as how humanity can still be possible when an individual confronts the dark sides of a self, a society, and his/her fate.Keywords: aesthetics, Rice, Su Tong, Ugly
Procedia PDF Downloads 169