Search results for: crow search algorithm
1277 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT
Procedia PDF Downloads 4801276 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 1551275 Nutritional Characteristics, Phytochemical and Antimicrobial Properties Vaccinium Pavifolium (Ericacea) Leaf Protein Concentrates
Authors: Sodamade A., Bolaji K. A.
Abstract:
Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that could serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of the plant (Vaccinium pavifolium) was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education Campus, Oyo. The sample was authenticated at the Forestry Research Institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition, mineral analysis phytochemical and antimicrobial properties were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive. The mineral analysis of the sample showed; Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g, Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g Cadmium and Mercury were not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, Steroids, Terpenoids, Cardiac glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Vaccinium parvifolium L. leaf protein concentrates showed that it contains bioactive compounds that are capable of combating the following microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisialae pneumonia and Proteus mirabilis. The results of the analysis of Vaccinium parvifolium L. leaf protein concentrates showed that the sample contains valuable nutrient and mineral constituents, and phytochemical compounds that could make the sample useful for medicinal activities.Keywords: leaf protein concentrates, vaccinium parvifolium, nutritional characteristics, mineral composition, antimicrobial activity
Procedia PDF Downloads 781274 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3761273 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 3721272 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1741271 Revising Our Ideas on Revisions: Non-Contact Bridging Plate Fixation of Vancouver B1 and B2 Periprosthetic Femoral Fractures
Authors: S. Ayeko, J. Milton, C. Hughes, K. Anderson, R. G. Middleton
Abstract:
Background: Periprosthetic femoral fractures (PFF) in association with hip hemiarthroplasty or total hip arthroplasty is a common and serious complication. In the Vancouver Classification system algorithm, B1 fractures should be treated with Open Reduction and Internal Fixation (ORIF) and preferentially revised in combination with ORIF if B2 or B3. This study aims to assess patient outcomes after plate osteosynthesis alone for Vancouver B1 and B2 fractures. The main outcome is the 1-year re-revision rate, and secondary outcomes are 30-day and 1-year mortality. Method: This is a retrospective single-centre case-series review from January 2016 to June 2021. Vancouver B1 and B2, non-malignancy fractures in adults over 18 years of age treated with polyaxial Non-Contact Bridging plate osteosynthesis, have been included. Outcomes were gathered from electronic notes and radiographs. Results: There were 50 B1 and 64 B2 fractures. 26 B2 fractures were managed with ORIF and revision, 39 ORIF alone. Of the revision group, one died within 30 days (3.8%), one at one year (3.8%), and two were revised within one year (7.7). Of the B2 ORIF group, three died within 30-day mortality (7.96%), eight at one year (21.1%), and 0 were revised in 1 year. Conclusion: This study has demonstrated that satisfactory outcomes can be achieved with ORIF, excluding revision in the management of B2 fractures.Keywords: arthroplasty, bridging plate, periprosthetic fracture, revision surgery
Procedia PDF Downloads 1011270 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model
Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet
Abstract:
This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application
Procedia PDF Downloads 1141269 Pediatric Health Nursing Research in Jordan: Evaluating the State of Knowledge and Determining Future Research Direction
Authors: Inaam Khalaf, Nadin M. Abdel Razeq, Hamza Alduraidi, Suhaila Halasa, Omayyah S. Nassar, Eman Al-Horani, Jumana Shehadeh, Anna Talal
Abstract:
Background: Nursing researchers are responsible for generating knowledge that corresponds to national and global research priorities in order to promote, restore, and maintain the health of individuals and societies. The objectives of this scoping review of Jordanian literature are to assess the existing research on pediatric nursing in terms of evolution, authorship and collaborations, funding sources, methodologies, topics of research, and pediatric subjects' age groups so as to identify gaps in research. Methodology: A search was conducted using related keywords obtained from national and international databases. The reviewed literature included pediatric health articles published through December 2019 in English and Arabic, authored by nursing researchers. The investigators assessed the retrieved studies and extracted data using a data-mining checklist. Results: The review included 265 articles authored by Jordanian nursing researchers concerning children's health, published between 1987 and 2019; 95% were published between 2009 and 2019. The most commonly applied research methodology was the descriptive non-experimental method (76%). The main generic topics were health promotion and disease prevention (23%), chronic physical conditions (19%), mental health, behavioral disorders, and forensic issues (16%). Conclusion: The review findings identified a grave shortage of evidence concerning nursing care issues for children below five years of age, especially those between ages two and five years. The research priorities identified in this review resonate with those identified in international reports. Implications: Nursing researchers are encouraged to conduct more research targeting topics of national-level importance in collaboration with clinically involved nurses and international scholars.Keywords: Jordan, scoping review, children health nursing, pediatric, adolescents
Procedia PDF Downloads 861268 Combining Chiller and Variable Frequency Drives
Authors: Nasir Khalid, S. Thirumalaichelvam
Abstract:
In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system
Procedia PDF Downloads 5581267 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating
Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain
Abstract:
Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating
Procedia PDF Downloads 3481266 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 3011265 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System
Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui
Abstract:
Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system
Procedia PDF Downloads 2561264 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 1961263 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 2111262 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning
Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang
Abstract:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG
Procedia PDF Downloads 1501261 Autoimmune Diseases Associated with Celiac Disease in Adults
Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia
Abstract:
Introduction: Celiac disease (CD) is an immune-mediated small intestinal disorder that occurs in genetically susceptible people. It is significantly associated with other autoimmune disorders represented mainly by type 1 diabetes and autoimmune dysthyroidism. The aim of our study is to determine the prevalence and the type of the various autoimmune diseases associated with CD in adult patients. Material and methods: This is a retrospective study including patients diagnosed with CD, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and January 2016. The diagnosis of CD was confirmed by serological tests and duodenal biopsy. The screening of autoimmune diseases was based on physical examination, biological and serological tests. Results: Sixty five patients with a female predominance were included, 48women (73.8%) and 17 men (26.2%). The mean age was 31.8 years (17-75). A family history of CD or other autoimmune diseases was present in 5 and 10 patients respectively. Clinical presentation of CD was made by recurrent abdominal pain in 49 cases, diarrhea in 29 cases, bloating in 17 cases, constipation in 25 cases and vomiting in 8 cases. Autoimmune diseases associated with CD were found in 30 cases (46.1%): type 1 diabetes in 15 patients attested by the positivity of anti-GAD antibodies in 11 cases and anti-IA2 in 4 cases, Hashimoto thyroiditis in 8 cases confirmed by the positivity of anti-TPO antibodies, Addison's disease in 2 patients, Anemia of Biermer in 2 patients, autoimmune hepatitis, Systemic erythematosus lupus, Gougerot Sjögren syndrome, rheumatoid arthritis, Vitiligo and antiphospholipid syndrome in one patient each. CD was associated with more than one autoimmune disease defining multiple autoimmune syndrome in 2 female patients. The first patient had Basedow disease, Addison disease and type 1 diabetes. The second patient had systemic erythematosus lupus and Gougerot Sjögren syndrome. Conclusion: In our study autoimmune diseases were associated with CD in 46.1% of cases and were dominated by diabetes and dysthroidism. After establishing the diagnosis of CD the search of associated autoimmune diseases is necessary in order to avoid any therapeutic delay which can alter the prognosis of the patient.Keywords: association, autoimmune thyroiditis, celiac disease, diabetes
Procedia PDF Downloads 2831260 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 2061259 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 1451258 Powering Profits: A Dynamic Approach to Sales Marketing and Electronics
Authors: Muhammad Awais Kiani, Maryam Kiani
Abstract:
This abstract explores the confluence of these two domains and highlights the key factors driving success in sales marketing for electronics. The abstract begins by digging into the ever-evolving landscape of consumer electronics, emphasizing how technological advancements and the growth of smart devices have revolutionized the way people interact with electronics. This paradigm shift has created tremendous opportunities for sales and marketing professionals to engage with consumers on various platforms and channels. Next, the abstract discusses the pivotal role of effective sales marketing strategies in the electronics industry. It highlights the importance of understanding consumer behavior, market trends, and competitive landscapes and how this knowledge enables businesses to tailor their marketing efforts to specific target audiences. Furthermore, the abstract explores the significance of leveraging digital marketing techniques, such as social media advertising, search engine optimization, and influencer partnerships, to establish brand identity and drive sales in the electronics market. It emphasizes the power of storytelling and creating captivating content to engage with tech-savvy consumers. Additionally, the abstract emphasizes the role of customer relationship management (CRM) systems and data analytics in optimizing sales marketing efforts. It highlights the importance of leveraging customer insights and analyzing data to personalize marketing campaigns, enhance customer experience, and ultimately drive sales growth. Lastly, the abstract concludes by underlining the importance of adapting to the ever-changing landscape of the electronics industry. It encourages businesses to embrace innovation, stay informed about emerging technologies, and continuously evolve their sales marketing strategies to meet the evolving needs and expectations of consumers. Overall, this abstract sheds light on the captivating realm of sales marketing in the electronics industry, emphasizing the need for creativity, adaptability, and a deep understanding of consumers to succeed in this rapidly evolving market.Keywords: marketing industry, electronics, sales impact, e-commerce
Procedia PDF Downloads 741257 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 4181256 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink
Procedia PDF Downloads 5021255 Health Outcomes from Multidrug-Resistant Salmonella in High-Income Countries: A Systematic Review and Meta-Analysis
Authors: Andrea Parisi, Samantha Vilkins, Luis Furuya-Kanamori, John A. Crump, Benjamin P. Howden, Darren Gray, Kathryn Glass, Martyn Kirk
Abstract:
Objectives: Salmonella is a leading cause of foodborne enterocolitis worldwide. Nontyphoidal Salmonella (NTS) infections that are Multi-Drug Resistant (MDR) (non-susceptible to ≥1 agent in ≥3 antimicrobial categories) may result in more severe outcomes, although these effects have not been systematically examined. We conducted a systematic review and meta-analysis to examine impacts of MDR NTS on health in high-income settings. Methods: We systematically reviewed the literature from scientific databases, including PubMed, Scopus and grey literature sources, using PRISMA guidelines. We searched for data from case-control studies, cohorts, outbreaks, reports and theses, imposing no language restriction. We included only publications from January 1990 to September 2016 from high income countries as classified by World Bank. We extracted data from papers on duration of illness, hospitalisation rates, morbidity and mortality for MDR and non-MDR NTS strains. Results: After removing duplicates, the initial search revealed 4258 articles. After further screening, we identified 16 eligible studies for the systematic review, and 9 of these were included in meta-analysis. NTS serotypes differed among the reported studies but serotype Typhimurium, Enteritidis, Newport and Heidelberg were among the most often reported as MDR pathogens. Salmonella infections that were MDR were associated with excess bloodstream infections (OR 1.63; 95%CI 1.18-2.26), excess hospitalisations (OR 2.77; 95%CI 1.47-5.21) and higher mortality (OR 3.54; 95%CI 1.10-11.40). Conclusions: MDR NTS infections are a serious public health concern. With the emergence of MDR Salmonella strains in the high-income countries, it is crucial to restrict the use of antimicrobials both in animals and humans, and intervene to prevent foodborne infections.Keywords: Antimicrobial Resistance, Bloodstream Infection, Health Outcomes, Hospitalisation, Invasive Disease, Multi-Drug Resistance (MDR), Mortality, Nontyphoidal Salmonella
Procedia PDF Downloads 3801254 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis
Procedia PDF Downloads 4481253 Psycho-Social Consequences of Gynecological Health Disparities among Immigrant Women in the USA: An Integrative Review
Authors: Khadiza Akter, Tammy Greer, Raegan Bishop
Abstract:
An in-depth study of the psycho-social effects of gynecological health disparities among immigrant women in the USA is the goal of this integrative review paper. Immigrant women frequently encounter unique obstacles that have severe psycho-social repercussions when it comes to receiving high-quality gynecological treatment. The review investigates the interaction of psychological, sociological, and health factors that affect the psycho-social effects that immigrant women experience in recognition of the significance of addressing these imbalances. The difficulties that immigrant women face in providing high-quality gynecological treatment in the USA are examined in this study. These difficulties are caused by a variety of psychological issues, including acculturation stress and stigma, as well as by social problems like prejudice, language hurdles, and cultural norms. Additionally, variations in healthcare access and affordability have a role. This study highlights the particular challenges that immigrant women have in receiving high-quality gynecological treatment in the United States. These difficulties are caused by both social problems like language obstacles, cultural norms, and biases, as well as psychological ones like acculturation stress and stigma. Additionally, variations in gynecological care for immigrant women are greatly influenced by variances in healthcare availability and price. To find pertinent research looking at the psychological effects of gynecological health disparities among immigrant women in the USA, a thorough search of numerous databases was done. Numerous approaches, including mixed, quantitative, and qualitative ones, were used in the studies. The important findings from various investigations were extracted and synthesized after they underwent a careful evaluation. In order to lessen these discrepancies and enhance the overall well-being of immigrant women, healthcare professionals, legislators, and researchers must collaborate to create specialized treatments, regulations, and health system reforms.Keywords: cultural barriers, gynecological health disparities, health care access, immigrant women, mental health, psycho-social consequences, social stigma
Procedia PDF Downloads 801252 Furnishing The Envelope; 3D Printed Construction Unit as Furniture
Authors: Maryam Kalkatechi
Abstract:
The paper presents the construction unit that was proposed as a result of researching and finding solutions for challenges of the traditional masonry unit. The concept of ‘unit as arrangements of cells’ was investigated in four categories of structure, handling and assembly, thermal characteristics and weather ability which resulted in construction unit as an independent system which shapes a part of the envelope. Comparing to the traditional wall systems in which the system is in layers, the part system is a monolithic piece by itself. Even though the overall wythe-10 inches- is less than the combined layers-14 inches- in a traditional wall system, it is still seen as a spatial component. The component as a furnishing of envelope is discussed from material application point of view. The algorithm definition of the arrangement cells crafts the relationship between cells and functionality with material. This craft is realized as the envelope furnishing. Three alternative materials in relation to furnishing the envelope are discussed for printing the construction unit; transparent plastic, opaque plastic and glass. The qualities vary in the four categories, however this paper focuses on the visual qualities of materials applied. In a diagram the qualities of the materials are compared in relation to each other.Keywords: furnishing envelope, 3D printed construction unit, opaque plastic, transparent plastic, glass
Procedia PDF Downloads 1811251 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation
Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester
Abstract:
In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.Keywords: Multidisciplinary Design Optimisation, Rule Based Architecture, Aircraft Design, Decision Support System
Procedia PDF Downloads 3551250 The Impact of Gold Mining on Disability: Experiences from the Obuasi Municipal Area
Authors: Mavis Yaa Konadu Agyemang
Abstract:
Despite provisions to uphold and safeguard the rights of persons with disability in Ghana, there is evidence that they still encounter several challenges which limit their full and effective involvement in mainstream society, including the gold mining sector. The study sought to explore how persons with physical disability (PWPDs) experience gold mining in the Obuasi Municipal Area. A qualitative research design was used to discover and understand the experiences of PWPDs regarding mining. The purposive sampling technique was used to select five key informants for the study with the age range of (24-52 years) while snowball sampling aided the selection of 16 persons with various forms of physical disability with the age range of (24-60 years). In-depth interviews were used to gather data. The interviews lasted from forty-five minutes to an hour. In relation to the setting, the interviews of thirteen (13) of the participants with disability were done in their houses, two (2) were done on the phone, and one (1) was done in the office. Whereas the interviews of the five (5) key informants were all done in their offices. Data were analyzed using Creswell’s (2009) concept of thematic analysis. The findings suggest that even though land degradation affected everyone in the area, persons with mobility and visual impairment experienced many difficulties trekking the undulating land for long distances in search of arable land. Also, although mining activities are mostly labour-intensive, PWPDs were not employed even in areas where they could work. Further, the cost of items, in general, was high, affecting PWPDs more due to their economic immobility and paying for other sources of water due to land degradation and water pollution. The study also discovered that the peculiar conditions of PWPDs were not factored into compensation payments, and neither were females with physical disability engaged in compensation negotiations. Also, although some of the infrastructure provided by the gold mining companies in the area was physically accessible to some extent, it was not accessible in terms of information delivery. There is a need to educate the public on the effects of mining on PWPDs, their needs as well as disability issues in general. The Minerals and Mining Act (703) should be amended to include provisions that would consider the peculiar needs of PWPDs in compensation payment.Keywords: mining, resettlement, compensation, environmental, social, disability
Procedia PDF Downloads 551249 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 3891248 Minimum Vertices Dominating Set Algorithm for Secret Sharing Scheme
Authors: N. M. G. Al-Saidi, K. A. Kadhim, N. A. Rajab
Abstract:
Over the past decades, computer networks and data communication system has been developing fast, so, the necessity to protect a transmitted data is a challenging issue, and data security becomes a serious problem nowadays. A secret sharing scheme is a method which allows a master key to be distributed among a finite set of participants, in such a way that only certain authorized subsets of participants to reconstruct the original master key. To create a secret sharing scheme, many mathematical structures have been used; the most widely used structure is the one that is based on graph theory (graph access structure). Subsequently, many researchers tried to find efficient schemes based on graph access structures. In this paper, we propose a novel efficient construction of a perfect secret sharing scheme for uniform access structure. The dominating set of vertices in a regular graph is used for this construction in the following way; each vertex represents a participant and each minimum independent dominating subset represents a minimal qualified subset. Some relations between dominating set, graph order and regularity are achieved, and can be used to demonstrate the possibility of using dominating set to construct a secret sharing scheme. The information rate that is used as a measure for the efficiency of such systems is calculated to show that the proposed method has some improved values.Keywords: secret sharing scheme, dominating set, information rate, access structure, rank
Procedia PDF Downloads 393