Search results for: learning Maltese as a second language
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9698

Search results for: learning Maltese as a second language

5798 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 167
5797 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective

Authors: Smita Singh

Abstract:

Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.

Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms

Procedia PDF Downloads 31
5796 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 80
5795 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens

Authors: Cynthia Adlerstein

Abstract:

Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.

Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher

Procedia PDF Downloads 360
5794 “Divorced Women are Like Second-Hand Clothes” - Hate Language in Media Discourse (Using the Example of Electronic Media Platforms)

Authors: Sopio Totibadze

Abstract:

Although the legal framework of Georgia reflects the main principles of gender equality and is in line with the international situation (UNDP, 2018), Georgia remains a male-dominated society. This means that men prevail in many areas of social, economic, and political life, which frequently gives women a subordinate status in society and the family (UN women). According to the latest study, “violence against women and girls in Georgia is also recognized as a public problem, and it is necessary to focus on it” (UN women). Moreover, the Public Defender's report on the protection of human rights in Georgia (2019) reveals that “in the last five years, 151 women were killed in Georgia due to gender and family violence”. Sadly, these statistics have increased significantly since that time. The issue was acutely reflected in the document published by the Organization for Security and Cooperation in Europe, “Gender Hate Crime” (March 10, 2021). “Unfortunately, the rates of femicide ..... are still high in the country, and distrust of law enforcement agencies often makes such cases invisible, which requires special attention from the state.” More precisely, the cited document considers that there are frequent cases of crimes based on gender-based oppression in Georgia, which pose a threat not only to women but also to people of any gender whose desires and aspirations do not correspond to the gender norms and roles prevailing in society. According to the study, this type of crime has a “significant and lasting impact on the victim(s) and also undermines the safety and cohesion of society and gender equality”. It is well-known that language is often used as a tool for gender oppression (Rusieshvili-Cartledge and Dolidze, 2021; Totibadze, 2021). Therefore, feminist and gender studies in linguistics ultimately serve to represent the problem, reflect on it, and propose ways to solve it. Together with technical advancement in communication, a new form of discrimination has arisen- hate language against women in electronic media discourse. Due to the nature of social media and the internet, messages containing hate language can spread in seconds and reach millions of people. However, only a few know about the detrimental effects they may have on the addressee and society. This paper aims to analyse the hateful comments directed at women on various media platforms to determine (1) the linguistic strategies used while attacking women and (2) the reasons why women may fall victim to this type of hate language. The data have been collected over six months, and overall, 500 comments will be examined for the paper. Qualitative and quantitative analysis was chosen for the methodology of the study. The comments posted on various media platforms, including social media posts, articles, or pictures, have been selected manually due to several reasons, the most important being the problem of identifying hate speech as it can disguise itself in different ways- humour, memes, etc. The comments on the articles, posts, pictures, and videos selected for sociolinguistic analysis depict a woman, a taboo topic, or a scandalous event centred on a woman that triggered a lot of hatred and hate language towards the person to whom the post/article was dedicated. The study has revealed that a woman can become a victim of hatred directed at them if they do something considered to be a deviation from a societal norm, namely, get a divorce, be sexually active, be vocal about feministic values, and talk about taboos. Interestingly, people who utilize hate language are not only men trying to “normalize” the prejudiced patriarchal values but also women who are equally active in bringing down a "strong" woman. The paper also aims to raise awareness about the hate language directed at women, as being knowledgeable about the issue at hand is the first step to tackling it.

Keywords: femicide, hate language, media discourse, sociolinguistics

Procedia PDF Downloads 84
5793 Morpho-Syntactic Pattern in Maithili Urdu

Authors: Mohammad Jahangeer Warsi

Abstract:

This is, perhaps, the first linguistic study of Maithili Urdu, a dialect of Urdu language of Indo-Aryan family, spoken by around four million speakers in Darbhanga, Samastipur, Begusarai, Madhubani, and Muzafarpur districts of Bihar. It has the subject–verb–object (SOV) word order and it lacks script and literature. Needless to say, this work is an attempt to document this dialect so that it should contribute to the field of descriptive linguistics. Besides, it is also spoken by majority of Maithili diaspora community. Maithili Urdu does not have its own script or literature, yet it has maintained an oral history of over many centuries. It has contributed to enriching the Maithili, Hindi and Urdu languages and literature very profoundly. Dialects are the contact languages of particular regions, and they have a deep impact on their cultural heritage. Slowly with time, these dialects begin to take shape of languages. The convergence of a dialect into a language is a symbol and pride of the people who speak it. Although, confined to the five districts of northern Bihar, yet highly popular among the natives, it is the primary mode of communication of the local Muslims. The paper will focus on the structure of expressions about Maithili Urdu that include the structure of words, phrases, clauses, and sentences. There are clear differences in linguistic features of Maithili Urdu vis-à-vis Urdu, Maithili and Hindi. Though being a dialect of Urdu, interestingly, there is only one second person pronoun tu and lack of agentive marker –ne. Although being spoken in the vicinity of Hindi, Urdu and Maithili, it undoubtedly has its own linguistic features, of them, verb conjugation is remarkably unique. Because of the oral tradition of this link language, intonation has become significantly prominent. This paper will discuss the morpho-syntactic pattern of Maithili Urdu and will go through a sample text to authenticate the findings.

Keywords: cultural heritage, morpho-syntactic pattern, Maithili Urdu, verb conjugation

Procedia PDF Downloads 220
5792 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 105
5791 Unification of Indonesia Time Zones Encourages People to Be on Time for Facing ASEAN Economic Community

Authors: Hasrullah Hasrullah

Abstract:

Since December 2015, the ASEAN Economic Community (AEC) is officially declared in the 27th Summit Conference of ASEAN and Indonesia is one of country are listed in the ASEAN members. Per January 1st, 2016 the ASEAN Economic Community (AEC) came into effect. However, its implementation in Indonesia is still weighing the pros and cons because Indonesia is considered too late to prepare for the ASEAN Economic Community (AEC). In other words, rubber time of Indonesian people has been occurring in the AEC. This paper reviews how Indonesia language influences people’s attitude to be rubber time culture and how time zones of Indonesia influence people’s attitude through media on television to be rubber time culture. The author addresses this research question empirically by collecting data from various sources of data those are relevant and compare among the unification of Indonesia time zones. The result demonstrates that unification of Indonesia time zones to be Standard Indonesia Time is a solution to encourage people to be ready on time for facing ASEAN Economic Community (AEC).

Keywords: unification time zones, Indonesia Language, Rubber Time, AEC

Procedia PDF Downloads 363
5790 Object Oriented Software Engineering Approach to Industrial Information System Design and Implementation

Authors: Issa Hussein Manita

Abstract:

This paper presents an example of industrial information system design and implementation (IIDC), the most common software engineering design steps that are applied to the different design stages. We are going through the life cycle of software system development. We start by a study of system requirement and end with testing and delivering system, going by system design and coding, program integration and system integration step. The most modern software design tools available used in the design this includes, but not limited to, Unified Modeling Language (UML), system modeling, SQL server side application, uses case analysis, design and testing as applied to information processing systems. The system is designed to perform tasks specified by the client with real data. By the end of the implementation of the system, default or user defined acceptance policy to provide an overall score as an indication of the system performance is used. To test the reliability of he designed system, it is tested in different environment and different work burden such as multi-user environment.

Keywords: software engineering, design, system requirement, integration, unified modeling language

Procedia PDF Downloads 571
5789 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 98
5788 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 110
5787 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 71
5786 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 81
5785 Students Reading and Viewing the American Novel in a University EFL/ESL Context: A Picture of Real Life

Authors: Nola Nahla Bacha

Abstract:

Research has indicated that ESL/EFL (nonnative students of English) students have difficulty in reading at the university as often times the requirements are long texts in which both cultural and linguistic factors impede their understanding and thus their motivation. This is especially the case in literature courses. It is the author’s view that if readings are selected according to the students’ interests and linguistic level, related to life situations and coupled with film study they will not only be motivated to read, but they will find reading interesting and exciting. They will view novels, and thus literature, as a picture of life. Students will also widen their vocabulary repertoire and overcome many of their linguistic problems. This study describes the procedure used in in a 20th Century American Novel class at one English medium university in Lebanon and explores students’ views on the novels assigned and their recommendations. Findings indicate that students significantly like to read novels, contrary to what some faculty claim and view the inclusion of novels as helping them with expanding their vocabulary repertoire and learning about real life which helps them linguistically, pedagogically, and above all personally during their life in and out of the university. Annotated texts, pictures and film will be used through technological aids to show how the class was conducted and how the students’ interacted with the novels assigned. Implications for teaching reading in the classroom are made.

Keywords: language, literature, novels, reading, university teaching

Procedia PDF Downloads 380
5784 Semantic Features of Turkish and Spanish Phraseological Units with a Somatic Component ‘Hand’

Authors: Narmina Mammadova

Abstract:

In modern linguistics, the comparative study of languages is becoming increasingly popular, the typology and comparison of languages that have different structures is expanding and deepening. Of particular interest is the study of phraseological units, which makes it possible to identify the specific features of the compared languages in all their national identity. This paper gives a brief analysis of the comparative study of somatic phraseological units (SFU) of the Spanish and Turkish languages with the component "hand" in the semantic aspect; identification of equivalents, analogs and non-equivalent units, as well as a description of methods of translation of non-equivalent somatic phraseological units. Comparative study of the phraseology of unrelated languages is of particular relevance since it allows us to identify both general, universal features and differential and specific features characteristic of a particular language. Based on the results of the generalization of the study, it can be assumed that phraseological units containing a somatic component have a high interlingual phraseological activity, which contributes to an increase in the degree of interlingual equivalence.

Keywords: Linguoculturology, Turkish, Spanish, language picture of the world, phraseological units, semantic microfield

Procedia PDF Downloads 199
5783 Investigating the Effect of Orthographic Transparency on Phonological Awareness in Bilingual Children with Dyslexia

Authors: Sruthi Raveendran

Abstract:

Developmental dyslexia, characterized by reading difficulties despite normal intelligence, presents a significant challenge for bilingual children navigating languages with varying degrees of orthographic transparency. This study bridges a critical gap in dyslexia interventions for bilingual populations in India by examining how consistency and predictability of letter-sound relationships in a writing system (orthographic transparency) influence the ability to understand and manipulate the building blocks of sound in language (phonological processing). The study employed a computerized visual rhyme-judgment task with concurrent EEG (electroencephalogram) recording. The task compared reaction times, accuracy of performance, and event-related potential (ERP) components (N170, N400, and LPC) for rhyming and non-rhyming stimuli in two orthographies: English (opaque orthography) and Kannada (transparent orthography). As hypothesized, the results revealed advantages in phonological processing tasks for transparent orthography (Kannada). Children with dyslexia were faster and more accurate when judging rhymes in Kannada compared to English. This suggests that a language with consistent letter-sound relationships (transparent orthography) facilitates processing, especially for tasks that involve manipulating sounds within words (rhyming). Furthermore, brain activity measured by event-related potentials (ERP) showed less effort required for processing words in Kannada, as reflected by smaller N170, N400, and LPC amplitudes. These findings highlight the crucial role of orthographic transparency in optimizing reading performance for bilingual children with dyslexia. These findings emphasize the need for language-specific intervention strategies that consider the unique linguistic characteristics of each language. While acknowledging the complexity of factors influencing dyslexia, this research contributes valuable insights into the impact of orthographic transparency on phonological awareness in bilingual children. This knowledge paves the way for developing tailored interventions that promote linguistic inclusivity and optimize literacy outcomes for children with dyslexia.

Keywords: developmental dyslexia, phonological awareness, rhyme judgment, orthographic transparency, Kannada, English, N170, N400, LPC

Procedia PDF Downloads 19
5782 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 136
5781 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 133
5780 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 87
5779 Exploring the Impact of ChatGPT on the English Writing Skills of a Group of International EFL Uzbek Students: A Qualitative Case Study Conducted at a Private University College in Malaysia

Authors: Uranus Saadat

Abstract:

ChatGPT, as one of the well-known artificial intelligence (AI) tools, has recently been integrated into English language education and has had several impacts on learners. Accordingly, concerns regarding the overuse of this tool among EFL/ESL learners are rising, which could lead to several disadvantages in their writing skills development. The use of ChatGPT in facilitating writing skills is a novel concept that demands further studies in different contexts and learners. In this study, a qualitative case study is applied to investigate the impact of ChatGPT on the writing skills of a group of EFL bachelor’s students from Uzbekistan studying Teaching English as the Second Language (TESL) at a private university in Malaysia. The data was collected through the triangulation of document analysis, semi-structured interviews, classroom observations, and focus group discussions. Subsequently, the data was analyzed by using thematic analysis. Some of the emerging themes indicated that ChatGPT is helpful in engaging students by reducing their anxiety in class and providing them with constructive feedback and support. Conversely, certain emerging themes revealed excessive reliance on ChatGPT, resulting in a decrease in students’ creativity and critical thinking skills, memory span, and tolerance for ambiguity. The study suggests a number of strategies to alleviate its negative impacts, such as peer review activities, workshops for familiarizing students with AI, and gradual withdrawal of AI support activities. This study emphasizes the need for cautious AI integration into English language education to cultivate independent learners with higher-order thinking skills.

Keywords: ChatGPT, EFL/ESL learners, English writing skills, artificial intelligence tools, critical thinking skills

Procedia PDF Downloads 31
5778 Code Mixing and Code-Switching Patterns in Kannada-English Bilingual Children and Adults Who Stutter

Authors: Vasupradaa Manivannan, Santosh Maruthy

Abstract:

Background/Aims: Preliminary evidence suggests that code-switching and code-mixing may act as one of the voluntary coping behavior to avoid the stuttering characteristics in children and adults; however, less is known about the types and patterns of code-mixing (CM) and code-switching (CS). Further, it is not known how it is different between children to adults who stutter. This study aimed to identify and compare the CM and CS patterns between Kannada-English bilingual children and adults who stutter. Method: A standard group comparison was made between five children who stutter (CWS) in the age range of 9-13 years and five adults who stutter (AWS) in the age range of 20-25 years. The participants who are proficient in Kannada (first language- L1) and English (second language- L2) were considered for the study. There were two tasks given to both the groups, a) General conversation (GC) with 10 random questions, b) Narration task (NAR) (Story / General Topic, for example., A Memorable Life Event) in three different conditions {Mono Kannada (MK), Mono English (ME), and Bilingual (BIL) Condition}. The children and adults were assessed online (via Zoom session) with a high-quality internet connection. The audio and video samples of the full assessment session were auto-recorded and manually transcribed. The recorded samples were analyzed for the percentage of dysfluencies using SSI-4 and CM, and CS exhibited in each participant using Matrix Language Frame (MLF) model parameters. The obtained data were analyzed using the Statistical Package for the Social Sciences (SPSS) software package (Version 20.0). Results: The mean, median, and standard deviation values were obtained for the percentage of dysfluencies (%SS) and frequency of CM and CS in Kannada-English bilingual children and adults who stutter for various parameters obtained through the MLF model. The inferential results indicated that %SS significantly varied between population (AWS vs CWS), languages (L1 vs L2), and tasks (GC vs NAR) but not across free (BIL) and bound (MK, ME) conditions. It was also found that the frequency of CM and CS patterns varies between CWS and AWS. The AWS had a lesser %SS but greater use of CS patterns than CWS, which is due to their excessive coping skills. The language mixing patterns were more observed in L1 than L2, and it was significant in most of the MLF parameters. However, there was a significantly higher (P<0.05) %SS in L2 than L1. The CS and CS patterns were more in conditions 1 and 3 than 2, which may be due to the higher proficiency of L2 than L1. Conclusion: The findings highlight the importance of assessing the CM and CS behaviors, their patterns, and the frequency of CM and CS between CWS and AWS on MLF parameters in two different tasks across three conditions. The results help us to understand CM and CS strategies in bilingual persons who stutter.

Keywords: bilinguals, code mixing, code switching, stuttering

Procedia PDF Downloads 82
5777 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 163
5776 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis

Authors: Adrian-Gabriel Chifu, Sebastien Fournier

Abstract:

One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.

Keywords: sentiment analysis, difficulty, classification, machine learning

Procedia PDF Downloads 93
5775 Employing Motivation, Enjoyment and Self-Regulation to Predict Aural Vocabulary Knowledge

Authors: Seyed Mohammad Reza Amirian, Seyedeh Khadije Amirian, Maryam Sabouri

Abstract:

The present study aimed to investigate second language (L2) motivation, enjoyment, and self-regulation as the main variables for explaining variance in the process, and to find out the outcome of L2 Aural Vocabulary Knowledge (AVK) development by focusing on the Iranian EFL students at Hakim Sabzevari University. To this end, 122 EFL students (86 females) and (36 males) participated in this study. The students filled out the Motivation Questionnaire, Foreign Language Enjoyment Questionnaire, and Self-Regulation Questionnaire and also took Aural Vocabulary Knowledge (AVK) Test. Using SPSS software, the data were analyzed through multiple regressions and path analysis. A preliminary Pearson correlation analysis revealed that 2 out of 3 independent variables were significantly linked to AVK. According to the obtained regression model, self-regulation was a significant predictor of aural vocabulary knowledge test. Finally, the results of the mediation analysis showed that the indirect effect of enjoyment on AVK through self- regulation was significant. These findings are discussed, and implications are offered.

Keywords: aural vocabulary knowledge, enjoyment, motivation, self-regulation

Procedia PDF Downloads 155
5774 Instructional Design Strategy Based on Stories with Interactive Resources for Learning English in Preschool

Authors: Vicario Marina, Ruiz Elena, Peredo Ruben, Bustos Eduardo

Abstract:

the development group of Educational Computing of the National Polytechnic (IPN) in Mexico has been developing interactive resources at preschool level in an effort to improve learning in the Child Development Centers (CENDI). This work describes both a didactic architecture and a strategy for teaching English with digital stories using interactive resources available through a Web repository designed to be used in mobile platforms. It will be accessible initially to 500 children and worldwide by the end of 2015.

Keywords: instructional design, interactive resources, digital educational resources, story based English teaching, preschool education

Procedia PDF Downloads 476
5773 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 174
5772 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance

Authors: Clement Yeboah, Eva Laryea

Abstract:

A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.

Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety

Procedia PDF Downloads 79
5771 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching

Authors: Mohammed Shaath

Abstract:

Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.

Keywords: TEL, orthodontic, teaching, traditional

Procedia PDF Downloads 46
5770 Developing a Moodle Course for Translation Theory and Methodology: The Importance of Theory in Translation Studies and Its Application

Authors: Antonia Tsaknaki

Abstract:

There are many and divergent views on how the science of translation should be taught in academic institutions or colleges, meaning as an independent study area or as part of Linguistics, Literature or Foreign Languages Departments. A much more debated issue refers to the question of whether translation theory should be included in syllabuses and study programs or the focus should be solely on practicing the profession, that is translating texts. This dissertation examines prevailing views on the significance of translation theory in translation studies in order to design an open course on moodle. Taking into account that there is a remarkable percentage of translation professionals who are self-taught without having any specific studies, the course aims at helping either translation students or professional translators familiarize with concepts, methods and problem-solving strategies that are considered necessary during the process. It is organized in four modules where the learner is guided through a series of topics (register, equivalence, decision-making, level of naturalness, Skopos theory etc); after completing these topics, they are given assignments (further reading) and texts to work on in order to practice the skills obtained. The course does not focus on a specific language pair and therefore is suitable for every individual who needs a theoretical background to boost their performance or for institutions seeking to save classroom time but not at the expense of learners’ skills.

Keywords: MOOCs, moodle, online learning, open courses, translation, translation theory

Procedia PDF Downloads 149
5769 Impact of Blended Learning in Interior Architecture Programs in Academia: A Case Study of Arcora Garage Academy from Turkey

Authors: Arzu Firlarer, Duygu Gocmen, Gokhan Uysal

Abstract:

There is currently a growing trend among universities towards blended learning. Blended learning is becoming increasingly important in higher education, with the aims of better accomplishing course learning objectives, meeting students’ changing needs and promoting effective learning both in a theoretical and practical dimension like interior architecture discipline. However, the practical dimension of the discipline cannot be supported in the university environment. During the undergraduate program, the practical training which is tried to be supported by two different internship programs cannot fully meet the requirements of the blended learning. The lack of education program frequently expressed by our graduates and employers is revealed in the practical knowledge and skills dimension of the profession. After a series of meetings for curriculum studies, interviews with the chambers of profession, meetings with interior architects, a gap between the theoretical and practical training modules is seen as a problem in all interior architecture departments. It is thought that this gap can be solved by a new education model which is formed by the cooperation of University-Industry in the concept of blended learning. In this context, it is considered that theoretical and applied knowledge accumulation can be provided by the creation of industry-supported educational environments at the university. In the application process of the Interior Architecture discipline, the use of materials and technical competence will only be possible with the cooperation of industry and participation of students in the production/manufacture processes as observers and practitioners. Wood manufacturing is an important part of interior architecture applications. Wood productions is a sustainable structural process where production details, material knowledge, and process details can be observed in the most effective way. From this point of view, after theoretical training about wooden materials, wood applications and production processes are given to the students, practical training for production/manufacture planning is supported by active participation and observation in the processes. With this blended model, we aimed to develop a training model in which theoretical and practical knowledge related to the production of wood works will be conveyed in a meaningful, lasting way by means of university-industry cooperation. The project is carried out in Ankara with Arcora Architecture and Furniture Company and Başkent University Department of Interior Design where university-industry cooperation is realized. Within the scope of the project, every week the video of that week’s lecture is recorded and prepared to be disseminated by digital medias such as Udemy. In this sense, the program is not only developed by the project participants, but also other institutions and people who are trained and practiced in the field of design. Both academicians from University and at least 15-year experienced craftsmen in the wood metal and dye sectors are preparing new training reference documents for interior architecture undergraduate programs. These reference documents will be a model for other Interior Architecture departments of the universities and will be used for creating an online education module.

Keywords: blended learning, interior design, sustainable training, effective learning.

Procedia PDF Downloads 136