Search results for: fault detection and classification
1770 The Geochemical Characteristic and Tectonic Setting of Mezoic-Cenozoic Volcanic and Granitic Rocks in Southern Sumatra, Indonesia
Authors: Syahrir Andi Mangga
Abstract:
During 1989–1993, the Geological Research and Development Center (recent Geological Survey Institute) Geological Agency, Ministry of Energy and Mineral Resources Republic of Indonesia was the collaboration with British Geological Survey, the United Kingdom to do technical assistance in order to collect data of geology in Sumatra Island. The overall corporation of technical programs was larger concern in stratigraphy, geochemical and age-dating studies. Availability of new data has been stimulated to reassessment of tectonic evolution of Sumatra Island. The study area located in Southern Sumatra within at latitudes 0°-6° S and 99°40’-106’00 E longitudes. The study tectonic is situated within along South Western margin of Sunda land, The Southeast Asia Continental extension arc of the Eurasian Plate and formed as part of Sunda Arc. The oceanic crust of Indian-Australian plate recently is being oblique subduction along the Sunda Trench off the West coast Sumatra. The Mesozoic-Cenozoic of the volcanic and granitic rocks can be divided into northern and southern plutons, defining a series subparallel, controlled by fault, northwest-southeast trending belts, some of the plutons are deformed and under-formed. They are widely exposed along the south-eastern side of the Barisan mountain. Based on the characteristic of minerals and crystallography, rocks found in this study area were granite, granitic, monzogranite and andesitic-Basaltic Volcanic Rock. It belongs to calc Alkaline was predominantly metalumina, I-Type Granite, Volcanic arc granites, Syncollisonal Granites (Syn_COLG) and tholeiitic basalt. It was formed since 169±5 to 20±1 Ma. The origin of magmas in interpreted to be derived from partial melting of igneous rock. The occurrence of the gratoid and volcanic rocks supposed to be closely related to the subduction of the Australian-Hindia oceanic crust beneath the Eurasia/Sunda land Continental Crust as Volcanic arc or continental margin granitic and shown youngest to the southwest. The subduction process having probably been different in position between one terrane to others led to the occurrence of segmentation subduction system. The positional discontinuities of the subduction are probably caused by the difference in time of emplacement and mechanism of volcanic and granitic rock between segments.Keywords: tectonic setting, I-type granitic, subduction, Southern Sumatra
Procedia PDF Downloads 2461769 Detection of Leishmania Mixed Infection from Phlebotomus papatasi in Central Iran
Authors: Nassibeh Hosseini-Vasoukolaei, Amir Ahmad Akhavan, Mahmood Jeddi-Tehrani, Ali Khamesipour, Mohammad Reza Yaghoobi Ershadi, Kamhawi Shaden, Valenzuela Jesus, Hossein Mirhendi, Mohammad Hossein Arandian
Abstract:
Zoonotic cutaneous leishmaniasis (ZCL) is an endemic disease in many rural areas of Iran. Sand flies were collected from rural areas of Esfahan province and were identified using valid identification keys. DNA was extracted from sand flies and Nested PCRs were done using specific primers. In this study, 44 out of 152 (28.9 %) sand flies were infected with L. majoralone. Eight sand flies showed mixed infection: four sand flies (2.6 %) were infected with L. major, L. turanicaand L. gerbili, one sand fly (0.7 %) was infected with L. major and L. turanica and three sand flies (2 %) were infected with L. turanicaand L. gerbili. Our results demonstrate the natural infection of P. papatasi sand fly with three species of L. major, L. turanica and L. gerbili which are circulating among R. opimusreservoir host and P. papatasi sand fly vector in central Iran.Keywords: Phlebotomus papatasi, Leishmania major, Leishmania turanica, Leishmania gerbili, mixed infection, Iran
Procedia PDF Downloads 4711768 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique
Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam
Abstract:
With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services
Procedia PDF Downloads 1191767 Evaluation of Biochemical Parameters in the Blood of Dromedary (Camelus Dromedarius)
Authors: M. Titaouine, T. Meziane, K. Deghnouche
Abstract:
The purpose of this study was to determine reference serum biochemistry values from dromedary (Camelus dromedarius) in Algeria and to evaluate potential sources of physiological variability such as the sex, age and season on serum data. Usual serum biochemistry values were determined in blood samples from 26 apparently healthy dromedaries, 11 males and 15 females, divided into 3 lots (ender 4years), (between 5 and 10 years), (up 10 years). Parametric reference ranges and physiological variations are determined for calcium (Ca), organic phosphate (P), magnesium (Mg), natrium (Na), potassium (K), iron (Fe), glucose, triglycerides (TG), cholesterol, urea, creatinine, total proteins and albumin. The results demonstrate: * Values which agreed with literature * Significant statistically differences (Anova test, p < 0.05) depending on: -the sex for Na, glucose, TG, cholesterol, urea, creatinine, albumin, -the age for Ca, P, K, Mg, glucose, TG, b and g globulin, -and season for Fe, urea, total proteins, TG, cholesterol and glucose. These reference ranges for serum biochemical analysis can be used for metabolic and nutritional disorders detection in dromedary.Keywords: age, biochemistry, dromadery, season, sex
Procedia PDF Downloads 3751766 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 2501765 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 4661764 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 3861763 Biodiversity of Pathogenic and Toxigenic Fungi Associated with Maize Grains Sampled across Egypt
Authors: Yasser Shabana, Khaled Ghoneem, Nehal Arafat, Younes Rashad, Dalia Aseel, Bruce Fitt, Aiming Qi, Benjamine Richard
Abstract:
Providing food for more than 100 million people is one of Egypt's main challenges facing development. The overall goal is to formulate strategies to enhance food security in light of population growth. Two hundred samples of maize grains from 25 governates were collected. For the detection of seed-borne fungi, the deep-freezing blotter method (DFB) and washing method (ISTA 1999) were used. A total of 41 fungal species was recovered from maize seed samples. Weather data from 30 stations scattered all over Egypt and covering the major maize growing areas were obtained. Canonical correspondence analysis of data for the obtained fungal genera with temperature, relative humidity, precipitation, wind speed, or solar radiation revealed that relative humidity, temperature and wind speed were the most influential weather variables.Keywords: biodiversity, climate change, maize, seed-borne fungi
Procedia PDF Downloads 1621762 Simple Ecofriendly Cyclodextrine-Surfactant Modified UHPLC Method for Quantification of Multivitamins in Pharmaceutical and Food Samples
Authors: Hassan M. Albishri, Abdullah Almalawi, Deia Abd El-Hady
Abstract:
A simple and ecofriendly cyclodextrine-surfactant modified UHPLC (CDS-UPLC) method for rapid and sensitive simultaneous determination of multi water-soluble vitamins such as ascorbic acid, pyridoxine hydrochloride and thiamine hydrochloride in commercial pharmaceuticals and milk samples have been firstly developed. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by a mixture of β-cyclodextrine (β-CD) and cationic surfactant under acidic conditions as an eco-friendly isocratic mobile phase at 0.02 mL/min flow rate. The proposed CDS- UHPLC method has been validated for the quantitative determination of multivitamins within 8 min in food and pharmaceutical samples. The method showed excellent linearity for analytes in a wide range of 10-1000 ng/µL. The repeatability and reproducibility of data were about 2.14 and 4.69 RSD%, respectively. The limits of detection (LODs) of analytes ranged between 0.86 and 5.6 ng/µL with a range of 81.8 -115.8% recoveries in tablets and milk samples. The current first CDS- UHPLC method could have vast applications for the precise analysis of multivitamins in complicated matrices.Keywords: ecofriendly, cyclodextrine-surfactant, multivitamins, UHPLC
Procedia PDF Downloads 2731761 Identification and Evaluation of Landscape Mosaics of Kutlubeyyazıcılar Campus, Bartın University, Turkey
Authors: Y. Sarı Nayim, B. N. Nayim
Abstract:
This research proposal includes the defining and evaluation of the semi-natural and cultural ecosystems at Bartın University main campus in Turkey in terms of landscape mosaics. The ecosystem mosaic of the main campus was divided into zones based on ecological classification technique. Based on the results from the study, it was found that 6 different ecosystem mosaics should be used as a base in the planning and design of the existing and future landscape planning of Kutlubeyyazıcılar campus. The first landscape zone involves the 'social areas'. These areas include yards, dining areas, recreational areas and lawn areas. The second landscape zone is 'main vehicle and pedestrian areas'. These areas include vehicle access to the campus landscape, moving in the campus with vehicles, parking and pedestrian walk ways. The third zone is 'landscape areas with high visual landscape quality'. These areas will be the places where attractive structural and plant landscape elements will be used. Fourth zone will be 'landscapes of building borders and their surroundings.' The fifth and important zone that should be survived in the future is 'Actual semi-natural forest and bush areas'. And the last zone is 'water landscape' which brings ecological value to landscape areas. While determining the most convenient areas in the planning and design of the campus, these landscape mosaics should be taken into consideration. This zoning will ensure that the campus landscape is protected and living spaces in the campus apart from the areas where human activities are carried out will be used properly.Keywords: campus landscape planning and design, landscape ecology, landscape mosaics, Bartın
Procedia PDF Downloads 3661760 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers
Procedia PDF Downloads 1921759 A Static and Dynamic Slope Stability Analysis of Sonapur
Authors: Rupam Saikia, Ashim Kanti Dey
Abstract:
Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method
Procedia PDF Downloads 2601758 Educational Attainment Inequalities in Depressive Symptoms in More Than 100 000 Individuals in Europe
Authors: Adam Chlapecka, Anna Kagstrom, Pavla Cermakova
Abstract:
Background: Increasing educational attainment (EA) could decrease the occurrence of depression. We investigated the relationship between EA and depressive symptoms in older individuals across four European regions. Methods: We studied 108 315 Europeans (54 % women, median age 63 years old) from the Survey on Health, Ageing and Retirement in Europe assessing EA (7 educational levels based on ISCED classification); and depressive symptoms (≥ 4 points on EURO-D scale). Logistic regression estimated the association between EA and depressive symptoms, adjusting for sociodemographic and health-related factors; testing for sex/age/region and education interactions. Results: Higher EA was associated with lower odds of depressive symptoms, independent of sociodemographic and health-related factors. A threshold of the lowest odds of depressive symptoms was detected at the first stage of tertiary education (OR 0.60; 95% CI 0.55-0.65; p<0.001; relative to no education). Central and Eastern Europe showed the strongest association (OR for high vs. low education 0.37; 95% CI 0.33-0.40; p<0.001) and Scandinavia the weakest (OR for high vs. low education 0.69; 95% CI 0.60-0.80; p<0.001). The association was strongest amongst younger individuals. There was a sex and education interaction only within Central and Eastern Europe. Conclusion: The level of EA is reflected in later-life depressive symptoms, suggesting that supporting individuals in achieving EA, and considering those with lower EA at increased risk for depression, could lead to the decreased burden of depression across the life course. Further educational support in Central and Eastern Europe may decrease the higher burden of depressive symptoms in women.Keywords: depression, education, epidemiology, Europe
Procedia PDF Downloads 2041757 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector
Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi
Abstract:
In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture
Procedia PDF Downloads 4321756 The Employees' Classification Method in the Space of Their Job Satisfaction, Loyalty and Involvement
Authors: Svetlana Ignatjeva, Jelena Slesareva
Abstract:
The aim of the study is development and adaptation of the method to analyze and quantify the indicators characterizing the relationship between a company and its employees. Diagnostics of such indicators is one of the most complex and actual issues in psychology of labour. The offered method is based on the questionnaire; its indicators reflect cognitive, affective and connotative components of socio-psychological attitude of employees to be as efficient as possible in their professional activities. This approach allows measure not only the selected factors but also such parameters as cognitive and behavioural dissonances. Adaptation of the questionnaire includes factor structure analysis and suitability analysis of phenomena indicators measured in terms of internal consistency of individual factors. Structural validity of the questionnaire was tested by exploratory factor analysis. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Factor analysis allows reduce dimension of the phenomena moving from the indicators to aggregative indexes and latent variables. Aggregative indexes are obtained as the sum of relevant indicators followed by standardization. The coefficient Cronbach's Alpha was used to assess the reliability-consistency of the questionnaire items. The two-step cluster analysis in the space of allocated factors allows classify employees according to their attitude to work in the company. The results of psychometric testing indicate possibility of using the developed technique for the analysis of employees’ attitude towards their work in companies and development of recommendations on their optimization.Keywords: involved in the organization, loyalty, organizations, method
Procedia PDF Downloads 3561755 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR
Authors: Huma Balouch
Abstract:
Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers
Procedia PDF Downloads 4951754 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1051753 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2691752 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3871751 Quality Assessment of Some Selected Locally Produced and Marketed Soft Drinks
Authors: Gerardette Darkwah, Gloria Ankar Brewoo, John Barimah, Gilbert Owiah Sampson, Vincent Abe-Inge
Abstract:
Soft drinks which are widely consumed in Ghana have been reported in other countries to contain toxic heavy metals beyond the acceptable limits in other countries. Therefore, the objective of this study was to assess the quality characteristics of selected locally produced and marketed soft drinks. Three (3) different batches of 23 soft drinks were sampled from the Takoradi markets. The samples were prescreened for the presence of reducing sugars, phosphates, alcohol and carbon dioxide. The heavy metal contents and physicochemical properties were also determined with AOAC methods. The results indicated the presence of reducing sugars, carbon dioxide and the absence of alcohol in all the selected soft drink samples. The pH, total sugars, moisture, total soluble solids (TSS) and titratable acidity ranged from 2.42 – 3.44, 3.30 – 10.44%, 85.63 – 94.85%, 5.00 – 13.33°Brix, and 0.21 – 1.99% respectively. The concentration of heavy metals were also below detection limits in all samples. The quality of the selected were within specifications prescribed by regulatory bodies.Keywords: heavy metal contamination, locally manufactured, quality, soft drinks
Procedia PDF Downloads 1481750 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4291749 Analog Railway Signal Object Controller Development
Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun
Abstract:
Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.Keywords: object controller, railway electronic, analog electronic, safety, railway signal
Procedia PDF Downloads 1011748 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 1301747 Natural Radioactivity in Foods Consumed in Turkey
Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt
Abstract:
This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.Keywords: foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey
Procedia PDF Downloads 4541746 Utility of Range of Motion Measurements on Classification of Athletes
Authors: Dhiraj Dolai, Rupayan Bhattacharya
Abstract:
In this study, a comparison of Range Of Motion (ROM) of middle and long-distance runners and swimmers has been made. The mobility of the various joints is essential for the quick movement of any sportsman. Knowledge of a ROM helps in preventing injuries, in repeating the movement, and in generating speed and power. ROM varies among individuals, and it is influenced by factors such as gender, age, and whether the motion is performed actively or passively. ROM for running and swimming, both performed with due consideration on speed, plays an important role. The time of generation of speed and mobility of the particular joints are very important for both kinds of athletes. The difficulties that happen during running and swimming in the direction of motion is changed. In this study, data were collected for a total of 102 subjects divided into three groups: control group (22), middle and long-distance runners (40), and swimmers (40), and their ages are between 12 to 18 years. The swimmers have higher ROM in shoulder joint flexion, extension, abduction, and adduction movement. Middle and long-distance runners have significantly greater ROM from Control Group in the left shoulder joint flexion with a 5.82 mean difference. Swimmers have significantly higher ROM from the Control Group in the left shoulder joint flexion with 24.84 mean difference and swimmers have significantly higher ROM from the Middle and Long distance runners in left shoulder flexion with 19.02 mean difference. The picture will be clear after a more detailed investigation.Keywords: range of motion, runners, swimmers, significance
Procedia PDF Downloads 1291745 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt
Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey
Abstract:
Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.Keywords: MIC, mycoplasmosis, PCR, sheep
Procedia PDF Downloads 2281744 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents
Authors: Sanjay Adhikesaven
Abstract:
Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.Keywords: computer vision, deep learning, workplace safety, automation
Procedia PDF Downloads 1031743 Optical-Based Lane-Assist System for Rowing Boats
Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park
Abstract:
Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.Keywords: auto-pilot, lane-assist, marine, optical, rowing
Procedia PDF Downloads 1321742 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo
Authors: Li Minghui, Min Shaorong, Zhang Jun
Abstract:
This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability
Procedia PDF Downloads 4551741 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining
Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi
Abstract:
Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory
Procedia PDF Downloads 403