Search results for: weather forecasting
911 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 561910 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 150909 Climate Change Effects on Agriculture
Authors: Abdellatif Chebboub
Abstract:
Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.Keywords: climate change, agriculture, weather change, danger of climate change
Procedia PDF Downloads 316908 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya
Authors: Khlifa El Atrash, Gabriel Assaf
Abstract:
Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load
Procedia PDF Downloads 309907 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 499906 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques
Authors: Jonathan J. Burson
Abstract:
With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis
Procedia PDF Downloads 97905 Progress Toward More Resilient Infrastructures
Authors: Amir Golalipour
Abstract:
In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate.Keywords: adaptation strategies, extreme events, resilience, transportation infrastructure
Procedia PDF Downloads 3904 The Impact of Agricultural Product Export on Income and Employment in Thai Economy
Authors: Anucha Wittayakorn-Puripunpinyoo
Abstract:
The research objectives were 1) to study the situation and its trend of agricultural product export of Thailand 2) to study the impact of agricultural product export on income of Thai economy 3) the impact of agricultural product export on employment of Thai economy and 4) to find out the recommendations of agricultural product export policy of Thailand. In this research, secondary data were collected as yearly time series data from 1990 to 2016 accounted for 27 years. Data were collected from the Bank of Thailand database. Primary data were collected from the steakholders of agricultural product export policy of Thailand. Data analysis was applied descriptive statistics such as arithmetic mean, standard deviation. The forecasting of agricultural product was applied Mote Carlo Simulation technique as well as time trend analysis. In addition, the impact of agricultural product export on income and employment by applying econometric model while the estimated parameters were utilized the ordinary least square technique. The research results revealed that 1) agricultural product export value of Thailand from 1990 to 2016 was 338,959.5 Million Thai baht with its growth rate of 4.984 percent yearly, in addition, the forecasting of agricultural product export value of Thailand has increased but its growth rate has been declined 2) the impact of agricultural product export has positive impact on income in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.0051 percent 3) the impact of agricultural product export has positive impact on employment in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.079 percent and 4) in the future, agricultural product export policy would focused on finished or semi-finished agricultural product instead of raw material by applying technology and innovation in to make value added of agricultural product export. The public agricultural product export policy would support exporters in private sector in order to encourage them as agricultural exporters in Thailand.Keywords: agricultural product export, income, employment, Thai economy
Procedia PDF Downloads 309903 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings
Procedia PDF Downloads 129902 Ammonia Bunkering Spill Scenarios: Modelling Plume’s Behaviour and Potential to Trigger Harmful Algal Blooms in the Singapore Straits
Authors: Bryan Low
Abstract:
In the coming decades, the global maritime industry will face a most formidable environmental challenge -achieving net zero carbon emissions by 2050. To meet this target, the Maritime Port Authority of Singapore (MPA) has worked to establish green shipping and digital corridors with ports of several other countries around the world where ships will use low-carbon alternative fuels such as ammonia for power generation. While this paradigm shift to the bunkering of greener fuels is encouraging, fuels like ammonia will also introduce a new and unique type of environmental risk in the unlikely scenario of a spill. While numerous modelling studies have been conducted for oil spills and their associated environmental impact on coastal and marine ecosystems, ammonia spills are comparatively less well understood. For example, there is a knowledge gap regarding how the complex hydrodynamic conditions of the Singapore Straits may influence the dispersion of a hypothetical ammonia plume, which has different physical and chemical properties compared to an oil slick. Chemically, ammonia can be absorbed by phytoplankton, thus altering the balance of the marine nitrogen cycle. Biologically, ammonia generally serves the role of a nutrient in coastal ecosystems at lower concentrations. However, at higher concentrations, it has been found to be toxic to many local species. It may also have the potential to trigger eutrophication and harmful algal blooms (HABs) in coastal waters, depending on local hydrodynamic conditions. Thus, the key objective of this research paper is to support the development of a model-based forecasting system that can predict ammonia plume behaviour in coastal waters, given prevailing hydrodynamic conditions and their environmental impact. This will be essential as ammonia bunkering becomes more commonplace in Singapore’s ports and around the world. Specifically, this system must be able to assess the HAB-triggering potential of an ammonia plume, as well as its lethal and sub-lethal toxic effects on local species. This will allow the relevant authorities to better plan risk mitigation measures or choose a time window with the ideal hydrodynamic conditions to conduct ammonia bunkering operations with minimal risk. In this paper, we present the first part of such a forecasting system: a jointly coupled hydrodynamic-water quality model that can capture how advection-diffusion processes driven by ocean currents influence plume behaviour and how the plume interacts with the marine nitrogen cycle. The model is then applied to various ammonia spill scenarios where the results are discussed in the context of current ammonia toxicity guidelines, impact on local ecosystems, and mitigation measures for future bunkering operations conducted in the Singapore Straits.Keywords: ammonia bunkering, forecasting, harmful algal blooms, hydrodynamics, marine nitrogen cycle, oceanography, water quality modeling
Procedia PDF Downloads 83901 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study
Authors: Ramesh Kumar Behera, Md. Izhar Hassan
Abstract:
Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero
Procedia PDF Downloads 155900 Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh
Authors: Md Ruhul Amin
Abstract:
This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant.Keywords: aphid, mite, thrips, weather factors
Procedia PDF Downloads 162899 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 111898 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 279897 Impact of Climate Variability on Dispersal and Distribution of Airborne Pollen and Fungal Spores in Nsukka, South-East Nigeria: Implication on Public Health
Authors: Dimphna Ezikanyi, Gloria Sakwari
Abstract:
Airborne pollen and fungal spores are major triggers of allergies, and their abundance and seasonality depend on plant responses to climatic and meteorological variables. A survey of seasonal prevalence of airborne pollen and fungal spores in Nsukka, Enugu, South- East Nigeria and relationship to climatic variables were carried out from Jan-June, 2017. The aim of the study was to access climate change and variability over time in the area and their accrued influence on modern pollen and spores rain. Decadal change in climate was accessed from variables collected from meteorological centre in the study area. Airborne samples were collected monthly using a modified Tauber-like pollen samplers raised 5 ft above ground level. Aerosamples collected were subjected to acetolysis. Dominant pollen recorded were those of Poaceae, Elaeis guinensis Jacq. and Casuarina equisetifolia L. Change in weather brought by onset of rainfall evoked sporulation and dispersal of diverse spores into ambient air especially potent allergenic spores with the spores of Ovularia, Bispora, Curvularia, Nigrospora, Helminthosporium preponderant; these 'hydrophilic fungi' were abundant in the rainy season though in varying quantities. Total fungal spores correlated positively with monthly rainfall and humidity but negatively with temperature. There was a negative though not significant correlation between total pollen count and rainfall. The study revealed a strong influence of climatic variables on abundance and spatial distribution of pollen and fungal spores in the ambient atmosphere.Keywords: allergy, fungal spores, pollen, weather parameters
Procedia PDF Downloads 176896 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 98895 Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017
Authors: Khatia Tavidashvili, Nino Jamrishvili, Valerian Omsarashvili
Abstract:
Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in 2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century.Keywords: hail, Kakheti, meteorology, vertical distribution of the air temperature
Procedia PDF Downloads 171894 VaR Estimation Using the Informational Content of Futures Traded Volume
Authors: Amel Oueslati, Olfa Benouda
Abstract:
New Value at Risk (VaR) estimation is proposed and investigated. The well-known two stages Garch-EVT approach uses conditional volatility to generate one step ahead forecasts of VaR. With daily data for twelve stocks that decompose the Dow Jones Industrial Average (DJIA) index, this paper incorporates the volume in the first stage volatility estimation. Afterwards, the forecasting ability of this conditional volatility concerning the VaR estimation is compared to that of a basic volatility model without considering any trading component. The results are significant and bring out the importance of the trading volume in the VaR measure.Keywords: Garch-EVT, value at risk, volume, volatility
Procedia PDF Downloads 285893 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region
Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed
Abstract:
Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.Keywords: blended cement, hot weather, hydration, volcanic ash
Procedia PDF Downloads 325892 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 72891 Dynamic Model for Forecasting Rainfall Induced Landslides
Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan
Abstract:
Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.Keywords: factor of safety, geographic information system, hydrological model, slope stability
Procedia PDF Downloads 423890 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region
Authors: Tomiwa, Akinyemi Clement
Abstract:
Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.Keywords: remote sensing, precipitation, drop size distribution, micro rain radar
Procedia PDF Downloads 34889 Artificial Intelligence and Governance in Relevance to Satellites in Space
Authors: Anwesha Pathak
Abstract:
With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.Keywords: satellite, space debris, traffic, threats, cyber security.
Procedia PDF Downloads 76888 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 84887 Forecasting Future Society to Explore Promising Security Technologies
Authors: Jeonghwan Jeon, Mintak Han, Youngjun Kim
Abstract:
Due to the rapid development of information and communication technology (ICT), a substantial transformation is currently happening in the society. As the range of intelligent technologies and services is continuously expanding, ‘things’ are becoming capable of communicating one another and even with people. However, such “Internet of Things” has the technical weakness so that a great amount of such information transferred in real-time may be widely exposed to the threat of security. User’s personal data are a typical example which is faced with a serious security threat. The threats of security will be diversified and arose more frequently because next generation of unfamiliar technology develops. Moreover, as the society is becoming increasingly complex, security vulnerability will be increased as well. In the existing literature, a considerable number of private and public reports that forecast future society have been published as a precedent step of the selection of future technology and the establishment of strategies for competitiveness. Although there are previous studies that forecast security technology, they have focused only on technical issues and overlooked the interrelationships between security technology and social factors are. Therefore, investigations of security threats in the future and security technology that is able to protect people from various threats are required. In response, this study aims to derive potential security threats associated with the development of technology and to explore the security technology that can protect against them. To do this, first of all, private and public reports that forecast future and online documents from technology-related communities are collected. By analyzing the data, future issues are extracted and categorized in terms of STEEP (Society, Technology, Economy, Environment, and Politics), as well as security. Second, the components of potential security threats are developed based on classified future issues. Then, points that the security threats may occur –for example, mobile payment system based on a finger scan technology– are identified. Lastly, alternatives that prevent potential security threats are proposed by matching security threats with points and investigating related security technologies from patent data. Proposed approach can identify the ICT-related latent security menaces and provide the guidelines in the ‘problem – alternative’ form by linking the threat point with security technologies.Keywords: future society, information and communication technology, security technology, technology forecasting
Procedia PDF Downloads 468886 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions
Authors: Timothy Kayode Samson, Adedoyin Isola Lawal
Abstract:
The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH
Procedia PDF Downloads 119885 Cost Overrun in Construction Projects
Authors: Hailu Kebede Bekele
Abstract:
Construction delays are suitable where project events occur at a certain time expected due to causes related to the client, consultant, and contractor. Delay is the major cause of the cost overrun that leads to the poor efficiency of the project. The cost difference between completion and the originally estimated is known as cost overrun. The common ways of cost overruns are not simple issues that can be neglected, but more attention should be given to prevent the organization from being devastated to be failed, and financial expenses to be extended. The reasons that may raised in different studies show that the problem may arise in construction projects due to errors in budgeting, lack of favorable weather conditions, inefficient machinery, and the availability of extravagance. The study is focused on the pace of mega projects that can have a significant change in the cost overrun calculation.15 mega projects are identified to study the problem of the cost overrun in the site. The contractor, consultant, and client are the principal stakeholders in the mega projects. 20 people from each sector were selected to participate in the investigation of the current mega construction project. The main objective of the study on the construction cost overrun is to prioritize the major causes of the cost overrun problem. The methodology that was employed in the construction cost overrun is the qualitative methodology that mostly rates the causes of construction project cost overrun. Interviews, open-ended and closed-ended questions group discussions, and rating qualitative methods are the best methodologies to study construction projects overrun. The result shows that design mistakes, lack of labor, payment delay, old equipment and scheduling, weather conditions, lack of skilled labor, payment delays, transportation, inflation, and order variations, market price fluctuation, and people's thoughts and philosophies, the prior cause of the cost overrun that fail the project performance. The institute shall follow the scheduled activities to bring a positive forward in the project life.Keywords: cost overrun, delay, mega projects, design
Procedia PDF Downloads 62884 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District
Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A
Abstract:
There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).Keywords: simulation, noise exposure, weather, proxy
Procedia PDF Downloads 379883 Analysis and Identification of Trends in Electric Vehicle Crash Data
Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller
Abstract:
Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis
Procedia PDF Downloads 89882 Climate Change Results in Increased Accessibility of Offshore Wind Farms for Installation and Maintenance
Authors: Victoria Bessonova, Robert Dorrell, Nina Dethlefs, Evdokia Tapoglou, Katharine York
Abstract:
As the global pursuit of renewable energy intensifies, offshore wind farms have emerged as a promising solution to combat climate change. The global offshore wind installed capacity is projected to increase 56-fold by 2055. However, the impacts of climate change, particularly changes in wave climate, are not widely understood. Offshore wind installation and maintenance activities often require specific weather windows, characterized by calm seas and low wave heights, to ensure safe and efficient operations. However, climate change-induced alterations in wave characteristics can reduce the availability of suitable weather windows, leading to delays and disruptions in project timelines. it applied the operational limits of installation and maintenance vessels to past and future climate wave projections. This revealed changes in the annual and monthly accessibility of offshore wind farms at key global development locations. When accessibility is only defined by significant wave height, spatial patterns in the annual accessibility roughly follow changes in significant wave height, with increased availability where significant wave height is decreasing. This resulted in a 1-6% increase in Europe and North America and a similar decrease in South America, Australia and Asia. Monthly changes suggest unchanged or slightly decreased (1-2%) accessibility in summer months and increased (2-6%) in winter. Further assessment includes assessing the sensitivity of accessibility to operational limits defined by wave height combined with wave period and wave height combined with wind speed. Results of this assessment will be included in the presentation. These findings will help stakeholders inform climate change adaptations in installation and maintenance planning practices.Keywords: climate change, offshore wind, offshore wind installation, operations and maintenance, wave climate, wind farm accessibility
Procedia PDF Downloads 83