Search results for: vehicle color recognition
3692 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine
Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin
Abstract:
A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.Keywords: multi-level gear oil, engine oil, viscosity, abrasion
Procedia PDF Downloads 3223691 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 2643690 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails
Authors: Barenten Suciu, Ryoichi Kinoshita
Abstract:
In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle
Procedia PDF Downloads 3163689 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 4863688 Creating Inclusive Educational Environments for Women Faculty of Color Harnessing Ubuntu Perspectives
Authors: Gonzaga Mukasa, Faith Maina, Amani Zaier
Abstract:
This study investigated whether harnessing Ubuntu perspectives can aid in healing wounds Hierarchical Microaggressive intersectionalities inflict on African immigrant women faculty in predominantly white institutions. The study interviewed 8 African immigrant faculty from different higher education institutions in the United States selected using the snowball sampling technique. The Ubuntu Theory anchored the study. Findings indicated that women faculty of color experience Hierarchical Microaggressive intersectionalities leading them to lose job satisfaction and feel deprofessionalized and isolated. The recommendations were that institutions make their recruitment more inclusive of women of color to avoid isolation. And should embrace Ubuntu perspectives such as survival, solidarity, compassion, dignity, and mutual respect to architect educational environments that foster diversity and inclusion.Keywords: ubuntu, women faculty, African immigrants, hierarchical microaggressive intersectionalities
Procedia PDF Downloads 673687 Melaninic Discrimination among Primary School Children
Authors: Margherita Cardellini
Abstract:
To our knowledge, dark skinned children are often victims of discrimination from adults and society, but few studies specifically focus on skin color discrimination on children coming from the same children. Even today, the 'color blind children' ideology is widespread among adults, teachers, and educators and maybe also among scholars, which seem really careful about study expressions of racism in childhood. This social and cultural belief let people think that all the children, because of their age and their brief experience in the world, are disinterested in skin color. Sometimes adults think that children are even incapable of perceiving skin colors and that it could be dangerous to talk about melaninic differences with them because they finally could notice this difference, producing prejudices and racism. Psychology and neurology research projects are showing for many years that even the newborns are already capable of perceiving skin color and ethnic differences by the age of 3 months. Starting from this theoretical framework we conducted a research project to understand if and how primary school children talk about skin colors, picking up any stereotypes or prejudices. Choosing to use the focus group as a methodology to stimulate the group dimension and interaction, several stories about skin color discrimination's episodes within their classroom or school have emerged. Using the photo elicitation technique we chose to stimulate talk about the research object, which is the skin color, asking the children what was ‘the first two things that come into your mind’ when they look the photographs presented during the focus group, which represented dark and light skinned women and men. So, this paper will present some of these stories about episodes of discrimination with an escalation grade of proximity related to the discriminatory act. It will be presented a story of discrimination happened within the school, in an after-school daycare, in the classroom and even episode of discrimination that children tell during the focus groups in the presence of the discriminated child. If it is true that the Declaration of the Right of the Child state that every child should be discrimination free, it’s also true that every adult should protect children from every form of discrimination. How, as adults, can we defend children against discrimination if we cannot admit that even children are potential discrimination’s actors? Without awareness, we risk to devalue these episodes, implicitly confident that the only way to fight against discrimination is to keep her quiet. The right not to be discriminated goes through the right to talk about its own experiences of discrimination and the right to perceive the unfairness of the constant depreciation about skin color or any element of physical diversity. Intercultural education could act as spokesperson for this mission in the belief that difference and plurality could really become elements of potential enrichment for humanity, starting from children.Keywords: colorism, experiences of discrimination, primary school children, skin color discrimination
Procedia PDF Downloads 1953686 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis
Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha
Abstract:
Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier
Procedia PDF Downloads 4673685 Light Car Assisted by PV Panels
Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid
Abstract:
This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.Keywords: light car, hybrid system, PV panel, electric motor
Procedia PDF Downloads 1213684 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation
Authors: Yuechao Lei, Lei Zhang
Abstract:
The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay
Procedia PDF Downloads 483683 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle
Authors: Shiuh-Jer Huang, Yun-Han Yeh
Abstract:
A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer
Procedia PDF Downloads 4813682 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1533681 Understanding the Interactive Nature in Auditory Recognition of Phonological/Grammatical/Semantic Errors at the Sentence Level: An Investigation Based upon Japanese EFL Learners’ Self-Evaluation and Actual Language Performance
Authors: Hirokatsu Kawashima
Abstract:
One important element of teaching/learning listening is intensive listening such as listening for precise sounds, words, grammatical, and semantic units. Several classroom-based investigations have been conducted to explore the usefulness of auditory recognition of phonological, grammatical and semantic errors in such a context. The current study reports the results of one such investigation, which targeted auditory recognition of phonological, grammatical, and semantic errors at the sentence level. 56 Japanese EFL learners participated in this investigation, in which their recognition performance of phonological, grammatical and semantic errors was measured on a 9-point scale by learners’ self-evaluation from the perspective of 1) two types of similar English sound (vowel and consonant minimal pair words), 2) two types of sentence word order (verb phrase-based and noun phrase-based word orders), and 3) two types of semantic consistency (verb-purpose and verb-place agreements), respectively, and their general listening proficiency was examined using standardized tests. A number of findings have been made about the interactive relationships between the three types of auditory error recognition and general listening proficiency. Analyses based on the OPLS (Orthogonal Projections to Latent Structure) regression model have disclosed, for example, that the three types of auditory error recognition are linked in a non-linear way: the highest explanatory power for general listening proficiency may be attained when quadratic interactions between auditory recognition of errors related to vowel minimal pair words and that of errors related to noun phrase-based word order are embraced (R2=.33, p=.01).Keywords: auditory error recognition, intensive listening, interaction, investigation
Procedia PDF Downloads 5133680 Importance of Assessing Racial Trauma after George Floyd in Children of Color in Schools
Authors: Gabriela Macera DiFilippo
Abstract:
The world watched in disbelief as George Floyd was killed by a policeman. The images from the scene were made more memorable by Mr. Floyd’s pleas and cries for his mother. In the aftermath of this tragedy, the Black Lives Matter movement gained momentum. Weeks and months after the protests, global interest in learning about tackling systemic racism erupted. One must wonder how school children of color viewed and processed this trauma. This study will examine the kinds of trauma experienced by children of color and the opportunity for school mental health providers to support these children. This study used literature searches that were previously conducted for proven and practical assessment methods that can help deal with racial trauma for children. As part of the assessment, trauma symptoms experienced by children of color were summarized and characterized in a non-imperial manner. The research was also will be done in practical ways to make adequate and effective mental health services available in schools and lessen the stigma. This research study found that there is a need to provide an analysis of the ongoing racial trauma of children of color after the death of George Floyd. Impactful and appropriate assessment methods, such as surveys, were presented to all school professionals. Lastly, this paper attempted to provide mental health professionals with the tools to screen and provide guidance based on unequivocal, unbiased methods for helping these children. There is a need for both schools and community leaders to ensure that every child has access to mental health care and is being assessed for their overall well-being. There is a need to educate the communities about racial trauma and its impact on individuals, especially children. School mental health professionals are encouraged to offer and educate schools and communities about racial trauma awareness, its importance, and ways to cope with it in different settings. The delivery of these informed services should focus on behavioral health and must be sensitive to children of color and different ways of self-care.Keywords: trauma, children, black psychology, students
Procedia PDF Downloads 583679 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1163678 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3353677 Indian Brands Speak Through Colors That Is ‘Culturally Vibrant’
Authors: Ranjana Dani
Abstract:
Brand communication narratives in India has evolved today to reflect the vibrant and intriguing tone of voice inspired by a rich cultural heritage while addressing the culturally alert attitude of the contemporary global Indian. Brands are strongly associated with the organization's values, vision, and mission and portray this through specific ‘look and feel’ and ‘tone of voice’. It is within the brand’s visual language that COLOUR has evolved to become a most powerful weapon in the designer’s arsenal. Color is big business in Brand Design! A brand is a ‘collection of perceptions’, meaningful brand connect is about striving to occupy head and heart space in consumers. The persona of the young Indian reflects a deep attachment to cultural roots as seen through the characteristic of ‘Indie Pride,’ blended with the ambitious, aspirational traits of a modern ‘global citizen’.Studies on ‘Color Perceptions’ indicate a trend that amplifies this, and hence brands reflect a GLOCAL palette, a Global and Local Blend. This paper establishes this through case studies that expand the inspirations, selection processes, and use of innovative color palettes crafted by some dynamic brand designers. This throws light on the role of color as it generates visual impact and recall for successful brands.Keywords: colour palettes, brand design and business, cultural context, colour perceptions, glocal, contemporaneity
Procedia PDF Downloads 763676 Investigating Effects of Vehicle Speed and Road PSDs on Response of a 35-Ton Heavy Commercial Vehicle (HCV) Using Mathematical Modelling
Authors: Amal G. Kurian
Abstract:
The use of mathematical modeling has seen a considerable boost in recent times with the development of many advanced algorithms and mathematical modeling capabilities. The advantages this method has over other methods are that they are much closer to standard physics theories and thus represent a better theoretical model. They take lesser solving time and have the ability to change various parameters for optimization, which is a big advantage, especially in automotive industry. This thesis work focuses on a thorough investigation of the effects of vehicle speed and road roughness on a heavy commercial vehicle ride and structural dynamic responses. Since commercial vehicles are kept in operation continuously for longer periods of time, it is important to study effects of various physical conditions on the vehicle and its user. For this purpose, various experimental as well as simulation methodologies, are adopted ranging from experimental transfer path analysis to various road scenario simulations. To effectively investigate and eliminate several causes of unwanted responses, an efficient and robust technique is needed. Carrying forward this motivation, the present work focuses on the development of a mathematical model of a 4-axle configuration heavy commercial vehicle (HCV) capable of calculating responses of the vehicle on different road PSD inputs and vehicle speeds. Outputs from the model will include response transfer functions and PSDs and wheel forces experienced. A MATLAB code will be developed to implement the objectives in a robust and flexible manner which can be exploited further in a study of responses due to various suspension parameters, loading conditions as well as vehicle dimensions. The thesis work resulted in quantifying the effect of various physical conditions on ride comfort of the vehicle. An increase in discomfort is seen with velocity increase; also the effect of road profiles has a considerable effect on comfort of the driver. Details of dominant modes at each frequency are analysed and mentioned in work. The reduction in ride height or deflection of tire and suspension with loading along with load on each axle is analysed and it is seen that the front axle supports a greater portion of vehicle weight while more of payload weight comes on fourth and third axles. The deflection of the vehicle is seen to be well inside acceptable limits.Keywords: mathematical modeling, HCV, suspension, ride analysis
Procedia PDF Downloads 2583675 The Effects on Yield and Yield Components of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Alphonse Lavallee Grape Cultivar
Abstract:
This study was carried out to determine the effects of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR + Boric Acid (BA), 1/6 CTR + BA, 1/9 CTR + BA applications on yield and yield components of four years old Alphonse Lavallee grape variety (Vitis vinifera L.) grown on grafted 110 Paulsen rootstock in Konya province in Turkey in the vegetation period in 2015. According to the results, the highest maturity index 21.46 with 1/9 CTR application; the highest grape juice yields 736.67 ml with 1/3 CTR + BA application; the highest L* color value 32.07 with 1/9 CTR application; the highest a* color value 1.74 with 1/9 CTR application; the highest b* color value 3.72 with 1/9 CTR application were obtained. The effects of applications on grape fresh yield, cluster weight and berry weight were not found statistically significant.Keywords: alphonse lavallee grape cultivar, different cluster tip reduction (1/3, 1/6, 1/9), foliar boric acid application, yield, quality
Procedia PDF Downloads 2803674 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1713673 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 3223672 Concept and Design of a Biomimetic Single-Wing Micro Aerial Vehicle (MAV)
Authors: S. Thomas, D. Ho, A. Kerroux, L. Lixi, N. Rackham, S. Rosenfeld
Abstract:
In this first paper, the different concepts and designs to build a single-wing MAV are discussed. Six scratch-building prototypes using three different designs have been tested regarding sufficient lift and weight distribution, of which various configurations were explored. Samare prototypes achieved wireless control over the motor and flap whilst obtaining data from the IMU, though obtaining an increase in lift was the key issue due to insufficient thrust. The final prototype was able to demonstrate an improvement in weight distribution.Keywords: SAMARE, micro aerial vehicle (MAV), unmanned aerial vehicle (UAV), mono-copter, single-wing, mono-wing, flight control, aerofoil, lift
Procedia PDF Downloads 4543671 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger
Procedia PDF Downloads 3003670 Evaluation of Cognitive Benefits among Differently Abled Subjects with Video Game as Intervention
Authors: H. Nagendra, Vinod Kumar, S. Mukherjee
Abstract:
In this study, the potential benefits of playing action video game among congenitally deaf and dumb subjects is reported in terms of EEG ratio indices. The frontal and occipital lobes are associated with development of motor skills, cognition, and visual information processing and color recognition. The sixteen hours of First-Person shooter action video game play resulted in the increase of the ratios β/(α+θ) and β/θ in frontal and occipital lobes. This can be attributed to the enhancement of certain aspect of cognition among deaf and dumb subjects.Keywords: cognitive enhancement, video games, EEG band powers, deaf and dumb subjects
Procedia PDF Downloads 4363669 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System
Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad
Abstract:
The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor
Procedia PDF Downloads 1183668 The Effects of Yield and Yield Components of Some Quality Increase Applications on Ismailoglu Grape Type in Turkey
Authors: Yaşar Önal, Aydın Akın
Abstract:
This study was conducted Ismailoglu grape type (Vitis vinifera L.) and its vine which was aged 15 was grown on its own root in a vegetation period of 2013 in Nevşehir province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 cluster tip reduction (1/3 CTR), shoot tip reduction (STR), 1/3 CTR + STR, TKI-HUMAS (TKI-HM) (Soil) (S), TKI-HM (Foliar) (F), TKI-HM (S + F), 1/3 CTR + TKI-HM (S), 1/3 CTR + TKI-HM (F), 1/3 CTR + TKI-HM (S+F), STR + TKI-HM (S), STR + TKI-HM (F), STR + TKI-HM (S + F), 1/3 CTR + STR+TKI-HM (S), 1/3 CTR + STR + TKI-HM (F), 1/3 CTR + STR + TKI-HM (S + F) on yield and yield components of Ismailoglu grape type. The results were obtained as the highest fresh grape yield (16.15 kg/vine) with TKI-HM (S), as the highest cluster weight (652.39 g) with 1/3 CTR + STR, as the highest 100 berry weight (419.07 g) with 1/3 CTR + STR + TKI-HM (F), as the highest maturity index (44.06) with 1/3 CTR, as the highest must yield (810.00 ml) with STR + TKI-HM (F), as the highest intensity of L* color (42.04) with TKI-HM (S + F), as the highest intensity of a* color (2.60) with 1/3 CTR + TKI-HM (S), as the highest intensity of b* color (7.16) with 1/3 CTR + TKI-HM (S) applications. To increase the fresh grape yield of Ismailoglu grape type can be recommended TKI-HM (S) application.Keywords: 1/3 cluster tip reduction, shoot tip reduction, TKI-Humas application, yield and yield components
Procedia PDF Downloads 3993667 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2653666 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images
Authors: Siddhartha Khare, Suyash Khare
Abstract:
Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC
Procedia PDF Downloads 603665 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification
Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi
Abstract:
Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix
Procedia PDF Downloads 1363664 Optimal Delivery of Two Similar Products to N Ordered Customers
Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis
Abstract:
The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering products located at a central depot to customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from the depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity of the goods that must be delivered. In the present work, we present a specific capacitated stochastic vehicle routing problem which has realistic applications to distributions of materials to shops or to healthcare facilities or to military units. A vehicle starts its route from a depot loaded with items of two similar but not identical products. We name these products, product 1 and product 2. The vehicle must deliver the products to N customers according to a predefined sequence. This means that first customer 1 must be serviced, then customer 2 must be serviced, then customer 3 must be serviced and so on. The vehicle has a finite capacity and after servicing all customers it returns to the depot. It is assumed that each customer prefers either product 1 or product 2 with known probabilities. The actual preference of each customer becomes known when the vehicle visits the customer. It is also assumed that the quantity that each customer demands is a random variable with known distribution. The actual demand is revealed upon the vehicle’s arrival at customer’s site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed during its route to return to the depot to restock with quantities of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. If there is shortage for the desired product, it is permitted to deliver the other product at a reduced price. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the expected total cost among all possible strategies. It is possible to find the optimal routing strategy using a suitable stochastic dynamic programming algorithm. It is also possible to prove that the optimal routing strategy has a specific threshold-type structure, i.e. it is characterized by critical numbers. This structural result enables us to construct an efficient special-purpose dynamic programming algorithm that operates only over those routing strategies having this structure. The findings of the present study lead us to the conclusion that the dynamic programming method may be a very useful tool for the solution of specific vehicle routing problems. A problem for future research could be the study of a similar stochastic vehicle routing problem in which the vehicle instead of delivering, it collects products from ordered customers.Keywords: collection of similar products, dynamic programming, stochastic demands, stochastic preferences, vehicle routing problem
Procedia PDF Downloads 2673663 Semantic Data Schema Recognition
Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia
Abstract:
The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns
Procedia PDF Downloads 418