Search results for: temporal reasoning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1424

Search results for: temporal reasoning

1064 The Development of Space-Time and Space-Number Associations: The Role of Non-Symbolic vs. Symbolic Representations

Authors: Letizia Maria Drammis, Maria Antonella Brandimonte

Abstract:

The idea that people use space representations to think about time and number received support from several lines of research. However, how these representations develop in children and then shape space-time and space-number mappings is still a debated issue. In the present study, 40 children (20 pre-schoolers and 20 elementary-school children) performed 4 main tasks, which required the use of more concrete (non-symbolic) or more abstract (symbolic) space-time and space-number associations. In the non-symbolic conditions, children were required to order pictures of everyday-life events occurring in a specific temporal order (Temporal sequences) and of quantities varying in numerosity (Numerical sequences). In the symbolic conditions, they were asked to perform the typical time-to-position and number-to-position tasks by mapping time-related words and numbers onto lines. Results showed that children performed reliably better in the non-symbolic Time conditions than the symbolic Time conditions, independently of age, whereas only pre-schoolers performed worse in the Number-to-position task (symbolic) as compared to the Numerical sequence (non-symbolic) task. In addition, only older children mapped time-related words onto space following the typical left-right orientation, pre-schoolers’ performance being somewhat mixed. In contrast, mapping numbers onto space showed a clear left-right orientation, independently of age. Overall, these results indicate a cross-domain difference in the way younger and older children process time and number, with time-related tasks being more difficult than number-related tasks only when space-time tasks require symbolic representations.

Keywords: space-time associations, space-number associations, orientation, children

Procedia PDF Downloads 339
1063 Effects on Cortical Thickness due to Musical Training in Elementary School Children: The Importance of Manual Structural Analysis

Authors: Saba Daneshmand, Assal Habibi

Abstract:

Studying musicians has become a prominent approach in macrostructural neuroscience research aimed at exploring the influence of environmental factors on brain development due to the significant impact of musical training on the brain. Although longitudinal studies can establish a direct causal relationship between musical training and brain development, only a limited number of studies have been conducted for a long enough duration. We recruited children for the experimental music group to participate in an after-school music program which was compared to the control group that had no such after-school program or enrichment activities. We ultimately calculated cortical thickness, a distinct measure of development. When a task such as playing an instrument occurs frequently, the associated neural processes become quicker and more refined over time, causing only the necessary pathways to remain; this, therefore, results in cortical thinning. The Brain and Music Lab has identified the anterior and posterior superior temporal gyrus, Heschl's gyrus, and the inferior regions to be involved with musicianship. The past study only found that the posterior superior temporal gyrus experienced a larger thinning in the music group compared to the control; however, we expect our ongoing study to produce similar but more intense results, including thinning in the other regions associated with musicianship. We believe the limited results of the previous study are due to its short duration which is why this ongoing and more lengthy longitudinal study is a significant and indispensable contribution in helping us discover the important developmental aspects of musical training.

Keywords: cortical thickness, music, neuroimaging, child development

Procedia PDF Downloads 20
1062 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan

Authors: Noori Shafiqullah

Abstract:

Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."

Keywords: improved MODIS, experiment, snow water equivalent, snowmelt

Procedia PDF Downloads 70
1061 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 98
1060 Gravity and Geometric String Mechanics

Authors: Joe Price LeClair

Abstract:

The study aims to comprehend the universe and its geometric representation by exploring the relationship between gravity, hydrogen, and neutrons. The purpose is to understand the neutrons' relationship to hydrogen to add geometric stability to the universe. Through the use of logic, deductive reasoning, and data collection from the free net, the study brings clarity to the understanding of the geometry of the universe. The study provides insight into the fundamental mechanics and forces to display the relationship between hydrogen and the neutron and how it translates to gravity. In conclusion, the study offers a unique perspective on the fundamental forces that contribute to the understanding of the geometry of our universe.

Keywords: geometric string mechanics, gravity, hydrogen, neutron

Procedia PDF Downloads 12
1059 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 101
1058 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence

Authors: Nasser Salah Eldin Mohammed Salih Shebka

Abstract:

Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.

Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic

Procedia PDF Downloads 113
1057 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 326
1056 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 311
1055 The Competing Roles of Educator, Music Teacher, and Musician in Professional Identity Development: A Longitudinal Autoethnography

Authors: Thomas LaRocca

Abstract:

This study explores the development of a public-school music teacher’s professional identity within three domains: as an educator in the profession at large, as a music teacher in a school, and as a professional musician. An autoethnographic method is employed by calling upon undergraduate student teaching reflections, graduate writing assignments and presentations, cover letters for employment, professional correspondence, and reflective memos. These artifacts provide a reference for phenomenological insights into the values, hopes, and criticisms within each domain over time –all of which provide a window into the overall ontological perspective of one’s professional life at different moments in their career. While the topic of music teacher identity has been examined using autoethnographical methods before, by accessing materials over the course of ten years, the study is able to investigate the ‘how’ of identity development in a temporal context; from undergraduate student to established professional. Additionally, while the field offers a considerable amount of work surrounding the child and adolescent identity development, there are unmined opportunities to examine identity development in the adult years, especially surrounding adult professional life. Employing a postpositivist approach with social constructionism as a backdrop, this study examines adult identity formation and the contradictions, resonances, and priorities within each domain, between each domain, and perceived expectations of the professional community. What is revealed is a journey of self-improvement motivated by failure and success, marked by negotiation and sacrifice; as each domain competes for mental and temporal resources, identity is viewed as not just who one is, but also as what one leaves behind. These insights offer a window into the ontology of identity of a music educator and may provide considerations for differentiating professional development based on what stage educators are at in their careers.

Keywords: identity, longitudinal autoethnography, music teacher education, music teacher ontology

Procedia PDF Downloads 141
1054 The Evolution of Spatio-Temporal Patterns of New-Type Urbanization in the Central Plains Economic Region in China

Authors: Sun fang, Zhang Wenxin

Abstract:

This paper establishes an evaluation index system for spatio-temporal patterns of urbanization, with the county as research unit. We use the Entropy Weight method, coefficient variance, the Theil index and ESDA-GIS to analyze spatial patterns and evolutionary characteristics of New-Type Urbanization in the Central Plains Economic Region (CPER) between 2000 and 2011. Results show that economic benefit, non-agricultural employment level and level of market development are the most important factors influencing the level of New-Type Urbanization in the CPER; overall regional differences in New-Type Urbanization have declined while spatial correlations have increased from 2000 to 2011. The overall spatial pattern has changed little, however; differences between the western and eastern areas of the CPER are clear, and the pattern of a strong west and weak east did not change significantly over the study period. Areas with high levels of New-Type Urbanization were mostly distributed along the Beijing-Guangzhou and LongHai Railways on both sides, a new influx of urbanization was tightly clustered around ZhengZhou in the Central Henan Urban Agglomeration, but this trend was found to be weakening slightly. The level of New-Type Urbanization in municipal districts was found to be much higher than it was in the county generally. Provincial borders experienced a lower rate of growth and a lower level of New-Type Urbanization than did any other areas, consistently forming clusters of cold spots and sub-cold spots. The analysis confirms that historical development, location, and diffusion effects of urban agglomeration are the main drivers of changes in New-Type Urbanization patterns in CPER.

Keywords: new-type urbanization, spatial pattern, central plains economic region, spatial evolution

Procedia PDF Downloads 292
1053 School as a Space of Power: A Foucauldian Critique

Authors: Yildirim Ortaoglan

Abstract:

The attempt to make thought school-like by fitting it into various frameworks with the institutionalization of it is almost simultaneous with philosophy itself. What once sprouted in the “academia” of old has institutionalized under the enlightenment's light, becoming the fundamental space reflecting the spirit of its age. However, the shift from the thinking temple where truth's knowledge was sought to functional spaces where power/power relations are constructed indicates a significant rupture in the meaning of school. Therefore, a genealogical inquiry into the meaning of the school can provide us with a path toward understanding how it should be approached in contemporary times. From this perspective, it is essential to highlight how power/power relations operate in the school in terms of disciplinary practices, temporal management, and spatial organization to construct a distinct subjectivation. Recognizing that the changing and evolving nature of education is related to the structure of space can be understood by revealing how disciplinary power and bio-power, two fundamental aspects of genealogical research, operate. In disciplinary power, the relationship of the subject with discipline, temporal management, and space is about improvement and normalization, while in biopower, it manifests in maximizing utility, increasing free time, and constructing spaces that seem more vital. These indicators not only facilitate the formation of students as a subjectivation but also enable the condition of the possibility of power/power relations. Because power is not applied to subjects but used by them for passage, and behind this lies the idea that the individual is already one of the components of power. As one of the components of power, in terms of subjectivation type, the student is one of the primary targets of power relations. Therefore, conducting a genealogical inquiry of the student as a type of subjectivation and the school as its living area from the philosophical foundations of education may offer a new opportunity for thinking about the contemporary crisis of thought. Within the framework of this possibility, our investigation will consider which aspects of the school and the student, brought together for educational purposes, can be thought of within and beyond power/power relations.

Keywords: power, education, space, school, student, discipline

Procedia PDF Downloads 58
1052 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
1051 Recent Advancement in Fetal Electrocardiogram Extraction

Authors: Savita, Anurag Sharma, Harsukhpreet Singh

Abstract:

Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.

Keywords: aECG, ACF, fECG, mECG

Procedia PDF Downloads 408
1050 Spatio-Temporal Variability and Trends in Frost-Free Season Parameters in Finland: Influence of Climate Teleconnections

Authors: Masoud Irannezhad, Sirpa Rasmus, Saghar Ahmadian, Deliang Chen, Bjorn Klove

Abstract:

Variability and changes in thermal conditions play a crucial role in functioning of human society, particularly over cold climate regions like Finland. Accordingly, the frost-free season (FFS) parameters in terms of start (FFSS), end (FFSE) and length (FFSL) have substantial effects not only on natural environment (e.g. flora and fauna), but also on human requirements (e.g. agriculture, forestry and energy generation). Applying the 0°C threshold of minimum temperature (Tmin), the FFS was defined as the period between the last spring frost as FFSS and the first fall frost as FFSE. For this study, gridded (10 x 10 km2) daily minimum temperature datasets throughout Finland during 1961-2011 was used to investigate recent spatio-temporal variations and trends in frost-free season (FFS) parameters and their relationships with the well-known large-scale climate teleconnections (CTs). The FFS in Finland naturally increases from north (~60 days) to south (~190 days), in association with earlier FFSS (~24 April) and later FFSE (~30 October). Statistically significant (p<0.05) trends in FFSL were all positive (increasing) ranged between 0 and 13.5 (days/decade) and mainly observed in the east, upper west, centre and upper north of Finland. Such lengthening trends in FFS were attributable to both earlier FFSS and later FFSE mostly over central and upper northern Finland, while only to later FFSE in eastern and upper western parts. Variations in both FFSL and FFSS were significantly associated with the Polar (POL) pattern over northern Finland, while with the East Atlantic (EA) pattern over eastern and upper western areas. However, the POL and Scandinavia (SCA) patterns were most influential CTs for FFSE variability over northern Finland.

Keywords: climate teleconnections, Finland, frost-free season, trend analysis

Procedia PDF Downloads 204
1049 Comparing the ‘Urgent Community Care Team’ Clinical Referrals in the Community with Suggestions from the Clinical Decision Support Software Dem DX

Authors: R. Tariq, R. Lee

Abstract:

Background: Additional demands placed on senior clinical teams with ongoing COVID-19 management has accelerated the need to harness the wider healthcare professional resources and upskill them to take on greater clinical responsibility safely. The UK NHS Long Term Plan (2019)¹ emphasises the importance of expanding Advanced Practitioners’ (APs) roles to take on more clinical diagnostic responsibilities to cope with increased demand. In acute settings, APs are often the first point of care for patients and require training to take on initial triage responsibilities efficiently and safely. Critically, their roles include determining which onward services the patients may require, and assessing whether they can be treated at home, avoiding unnecessary admissions to the hospital. Dem Dx is a Clinical Reasoning Platform (CRP) that claims to help frontline healthcare professionals independently assess and triage patients. It guides the clinician from presenting complaints through associated symptoms to a running list of differential diagnoses, media, national and institutional guidelines. The objective of this study was to compare the clinical referral rates and guidelines adherence registered by the HMR Urgent Community Care Team (UCCT)² and Dem Dx recommendations using retrospective cases. Methodology: 192 cases seen by the UCCT were anonymised and reassessed using Dem Dx clinical pathways. We compared the UCCT’s performance with Dem Dx regarding the appropriateness of onward referrals. We also compared the clinical assessment regarding adherence to NICE guidelines recorded on the clinical notes and the presence of suitable guidance in each case. The cases were audited by two medical doctors. Results: Dem Dx demonstrated appropriate referrals in 85% of cases, compared to 47% in the UCCT team (p<0.001). Of particular note, Dem Dx demonstrated an almost 65% (p<0.001) improvement in the efficacy and appropriateness of referrals in a highly experienced clinical team. The effectiveness of Dem Dx is in part attributable to the relevant NICE and local guidelines found within the platform's pathways and was found to be suitable in 86% of cases. Conclusion: This study highlights the potential of clinical decision support, as Dem Dx, to improve the quality of onward clinical referrals delivered by a multidisciplinary team in primary care. It demonstrated that it could support healthcare professionals in making appropriate referrals, especially those that may be overlooked by providing suitable clinical guidelines directly embedded into cases and clear referral pathways. Further evaluation in the clinical setting has been planned to confirm those assumptions in a prospective study.

Keywords: advanced practitioner, clinical reasoning, clinical decision-making, management, multidisciplinary team, referrals, triage

Procedia PDF Downloads 150
1048 Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain

Authors: M. A. Hernández-Ceballos, E. G. San Miguel, C. Galán, J. P. Bolívar

Abstract:

The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability.

Keywords: 7Be, 210Pb, air masses, mesoscale process

Procedia PDF Downloads 409
1047 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 121
1046 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro

Authors: Qiuyue Peng, Vladimir Zachar

Abstract:

The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.

Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations

Procedia PDF Downloads 114
1045 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 357
1044 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 341
1043 Application of Neural Petri Net to Electric Control System Fault Diagnosis

Authors: Sadiq J. Abou-Loukh

Abstract:

The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.

Keywords: petri net, neural petri net, electric control system, fault diagnosis

Procedia PDF Downloads 477
1042 Ontology-Based Representation of Islamic Rules to Perform Salah

Authors: Hamza Zafar, Quratulain Rajput

Abstract:

Salah (نماز ) is one of five pillars of Islam and obligatory for every Muslims. However, due to the lack of Islamic knowledge it might be very difficult for a layperson to perform it correctly. This paper presents an ontology based representation of Islamic rules to perform Salah. The Salah ontology has been built under the guidance of domain expert in light of Quran and Hadith. The ontology consists of basic concepts as well as relationship among concepts and constraints on them. The basic concepts include cleanness, body cover, Salah timing and steps to perform Salah. The SWRL rule language has been used to represent rule to determine whether the Salah performed correctly or it should be repeated. Finally, we evaluate the use of the Salat ontology through user’s example queries using SPARQL queries.

Keywords: prayer, salah, ontology, SPARQL queries, reasoning

Procedia PDF Downloads 418
1041 Hydro-Geochemistry of Qare-Sou Catchment and Gorgan Gulf, Iran: Examining Spatial and Temporal Distribution of Major Ions and Determining the River’s Hydro-Chemical Type

Authors: Milad Kurdi, Hadi Farhadian, Teymour Eslamkish

Abstract:

This study examined the hydro-geochemistry of Qare-Sou catchment and Gorgan Gulf in order to determine the spatial distribution of major ions. In this regard, six hydrometer stations in the catchment and four stations in Gorgan Gulf were chosen and the samples were collected. Results of spatial and temporal distribution of major ions have shown similar variation trends for calcium, magnesium, and bicarbonate ions. Also, the spatial trend of chloride, sulfate, sodium and potassium ions were same as Electrical Conductivity (EC) and Total Dissolved Solid (TDS). In Nahar Khoran station, the concentrations of ions were more than other stations which may be related to human activities and the role of geology. The Siah Ab station’s ions showed high concentration which is may be related to the station’s close proximity to Gorgan Gulf and the return of water to Qare-Sou River. In order to determine the interaction of water and rock, the Gibbs diagram was used and the results showed that water of the river falls in the rock range and it is affected more by weathering and reaction between water and stone and less by evaporation and crystallization. Assessment of the quality of river water by using graphic methods indicated that the type of water in this area is Ca-HCO3-Mg. Major ions concentration in Qare-Sou in the universal average was more than but not more than the allowed limit by the World Health Organization and China Standard Organization. A comparison of ions concentration in Gorgan Gulf, seas and oceans showed that the pH in Gorgan Gulf was more than the other seas but in Gorgan Gulf the concentration of anion and cation was less than other seas.

Keywords: hydro-geochemistry, Qare-Sou river, Gorgan gulf, major ions, Gibbs diagram, water quality, graphical methods

Procedia PDF Downloads 317
1040 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 65
1039 Interacting with Multi-Scale Structures of Online Political Debates by Visualizing Phylomemies

Authors: Quentin Lobbe, David Chavalarias, Alexandre Delanoe

Abstract:

The ICT revolution has given birth to an unprecedented world of digital traces and has impacted a wide number of knowledge-driven domains such as science, education or policy making. Nowadays, we are daily fueled by unlimited flows of articles, blogs, messages, tweets, etc. The internet itself can thus be considered as an unsteady hyper-textual environment where websites emerge and expand every day. But there are structures inside knowledge. A given text can always be studied in relation to others or in light of a specific socio-cultural context. By way of their textual traces, human beings are calling each other out: hypertext citations, retweets, vocabulary similarity, etc. We are in fact the architects of a giant web of elements of knowledge whose structures and shapes convey their own information. The global shapes of these digital traces represent a source of collective knowledge and the question of their visualization remains an opened challenge. How can we explore, browse and interact with such shapes? In order to navigate across these growing constellations of words and texts, interdisciplinary innovations are emerging at the crossroad between fields of social and computational sciences. In particular, complex systems approaches make it now possible to reconstruct the hidden structures of textual knowledge by means of multi-scale objects of research such as semantic maps and phylomemies. The phylomemy reconstruction is a generic method related to the co-word analysis framework. Phylomemies aim to reveal the temporal dynamics of large corpora of textual contents by performing inter-temporal matching on extracted knowledge domains in order to identify their conceptual lineages. This study aims to address the question of visualizing the global shapes of online political discussions related to the French presidential and legislative elections of 2017. We aim to build phylomemies on top of a dedicated collection of thousands of French political tweets enriched with archived contemporary news web articles. Our goal is to reconstruct the temporal evolution of online debates fueled by each political community during the elections. To that end, we want to introduce an iterative data exploration methodology implemented and tested within the free software Gargantext. There we combine synchronic and diachronic axis of visualization to reveal the dynamics of our corpora of tweets and web pages as well as their inner syntagmatic and paradigmatic relationships. In doing so, we aim to provide researchers with innovative methodological means to explore online semantic landscapes in a collaborative and reflective way.

Keywords: online political debate, French election, hyper-text, phylomemy

Procedia PDF Downloads 186
1038 Digitally Mapping Aboriginal Journey Ways

Authors: Paul Longley Arthur

Abstract:

This paper reports on an Australian Research Council-funded project utilising the Australian digital research infrastructure the ‘Time-Layered Cultural Map of Australia’ (TLCMap) (https://www.tlcmap.org/) [1]. This resource has been developed to help researchers create digital maps from cultural, textual, and historical data, layered with datasets registered on the platform. TLCMap is a set of online tools that allows humanities researchers to compile humanities data using spatio-temporal coordinates – to upload, gather, analyse and visualise data. It is the only purpose-designed, Australian-developed research tool for humanities and social science researchers to identify geographical clusters and parallel journeys by sight. This presentation discusses a series of Aboriginal mapping and visualisation experiments using TLCMap to show how Indigenous knowledge can reconfigure contemporary understandings of space including the urbanised landscape [2, 3]. The research data being generated – investigating the historical movements of Aboriginal people, the distribution of networks, and their relation to land – lends itself to mapping and geo-spatial visualisation and analysis. TLCMap allows researchers to create layers on a 3D map which pinpoint locations with accompanying information, and this has enabled our research team to plot out traditional historical journeys undertaken by Aboriginal people as well as to compile a gazetteer of Aboriginal place names, many of which have largely been undocumented until now [4]. The documented journeys intersect with and overlay many of today’s urban formations including main roads, municipal boundaries, and state borders. The paper questions how such data can be incorporated into a more culturally and ethically responsive understanding of contemporary urban spaces and as well as natural environments [5].

Keywords: spatio-temporal mapping, visualisation, Indigenous knowledge, mobility and migration, research infrastructure

Procedia PDF Downloads 21
1037 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English

Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo

Abstract:

Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.

Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions

Procedia PDF Downloads 109
1036 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation

Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.

Keywords: assembly automation, assembly attributes, assembly, CAD

Procedia PDF Downloads 305
1035 Psycho-social Antecedents of Goal Setting and Self-Control of Thai University Students

Authors: Duchduen Bhanthumnavin

Abstract:

One of the most important characteristics to increase competitive ability in undergraduate students after post COVID-19 era is goal setting and self-control. This correlational study aimes at investigating the influence of psycho-social antecedents on goal setting and self-control in 550 Thai university students. Results from multiple regression analysis revealed that the important predictors of this characteristic were reasoning ability, psychological immunity, attitudes toward competition, core self-evaluation, and family nurture, which yielded 54.28 predictive percentage in the total sample. Moreover, the analysis identified three at-risk groups, namely, male students, low GPA students, and students with siblings. Discussion and implications in general and for specific purposes for the at-risk groups were offered.

Keywords: antecedents, plan and self-control, predictors, university students

Procedia PDF Downloads 64