Search results for: temporal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25680

Search results for: temporal data

25320 Spacio-Temporal Variation of the Zooplanktonic Community of Esa-Odo Reservoir, Esa-Odo, Osun State, Nigeria

Authors: Helen Yetunde Omoboye, Adebukola Adenike Adedeji, Israel Funso Adeniyi

Abstract:

This study of the biodiversity, community structure, and production capacity of the zooplankton community is an aspect of bio-monitoring of the aquatic ecosystem. Samples were selected horizontally and vertically from Esa-Odo Reservoir using improvised Meyer’s water sampler. Planktonic samples were collected at two months intervals for two years. Net and total plankton were sampled by filtration and sedimentation methods. Planktonic samples were preserved as 5% formalin and 1% Lugol’s solution. Measurement, enumeration, and scaled pictures of the recorded zooplankton were taken using a photomicrograph. The taxonomic composition of zooplankton biota was determined using identification keys. Eighty three (83) species of zooplankton recorded in this study belong to 4 groups: Rotifera, Cladocera, Copepoda, and Insecta. Rotifera was the most represented group (61.21%). Horizontally, 24 species with the highest mean abundance characterized the lacustrine; while 12 species and 10 species were unique to the transition and riverine zones, respectively. Vertically, most species had their mean abundance decreased from the surface to the bottom of the reservoir. A total of nine (9), two (2), and one (1) species were peculiar to the surface, bottom and mid-depth, respectively. Zooplankton was most abundant during the dry season. In conclusion, Esa-Odo Reservoir comprised highly diversified zooplankton fauna with great potential to support a rich aquatic community and fishery production. The reservoir can be classified as fairly clean based on the abundance of the rotifer group. However, the lake should be subjected to regular proper monitoring because of the presence of some pollution tolerant copepod species identified among the zooplankton fauna.

Keywords: zooplankton, spatial, temporal, abundance, biodiversity, reservoir

Procedia PDF Downloads 97
25319 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 323
25318 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 285
25317 A Descriptive Study of Turkish Straits System on Dynamics of Environmental Factors Causing Maritime Accidents

Authors: Gizem Kodak, Alper Unal, Birsen Koldemir, Tayfun Acarer

Abstract:

Turkish Straits System which consists of Istanbul Strait (Bosphorus), Canakkale Strait (Dardanelles) and the Marmara Sea has a strategical location on international maritime as it is a unique waterway between the Mediterranean Sea, Black Sea and the Aegean Sea. Thus, this area has great importance since it is the only waterway between Black Sea countries and the rest of the World. Turkish Straits System has dangerous environmental factors hosts more vessel every day through developing World trade and this situation results in expanding accident risks day by day. Today, a lot of precautions have been taken to ensure safe navigation and to prevent maritime accidents, and international standards are followed to avoid maritime accidents. Despite this, the environmental factors that affect this area, trigger the maritime accidents and threaten the vessels with new accidents risks in different months with different hazards. This descriptive study consists of temporal and spatial analyses of environmental factors causing maritime accidents. This study also aims at contributing to safety navigation including monthly and regionally characteristics of variables. In this context, two different data sets are created consisting of environmental factors and accidents. This descriptive study on the accidents between 2001 and 2017 the mentioned region also studies the months and places of the accidents with environmental factor variables. Environmental factor variables are categorized as dynamic and static factors. Dynamic factors are appointed as meteorological and oceanographical while static factors are appointed as geological factors that threaten safety navigation with geometrical restricts. The variables that form dynamic factors are approached meteorological as wind direction, wind speed, wave altitude and visibility. The circulations and properties of the water mass on the system are studied as oceanographical properties. At the end of the study, the efficient meteorological and oceanographical parameters on the region are presented monthly and regionally. By this way, we acquired the monthly, seasonal and regional distributions of the accidents. Upon the analyses that are done; The Turkish Straits System that connects the Black Sea countries with the other countries and which is one of the most important parts of the world trade; is analyzed on temporal and spatial dimensions on the reasons of the accidents and have been presented as environmental factor dynamics causing maritime accidents.

Keywords: descriptive study, environmental factors, maritime accidents, statistics

Procedia PDF Downloads 202
25316 Improving Law Enforcement Strategies Through Geographic Information Systems: A Spatio-Temporal Analysis of Antisocial Activities in Móstoles (2022)

Authors: Daniel Suarez Alonso

Abstract:

This study has tried to focus on the alternatives offered to police institutions by the implementation of Geographic Information systems. Providing operational police commanders with effective and efficient tools, providing analytical capacity to reduce criminal opportunities, must be a priority. Given the intimate connection of crimes and infractions to the environment, law enforcement institutions must respond proactively to changing circumstances of anti-norm behaviors. To this end, it has been intended to analyze the antisocial spatial distribution of the city of Móstoles, trying to identify those spatiotemporal patterns that occur to anticipate their commission through the planning of dynamic preventive strategies. The application of GIS offers alternative analytical approaches to the different problems that underlie the development of life in society, focusing resources on those places with the highest concentration of incidents.

Keywords: data analysis, police organizations, police prevention, geographic information systems

Procedia PDF Downloads 50
25315 Study on the Spatial Evolution Characteristics of Urban Agglomeration Integration in China: The Case of Chengdu-Chongqing Urban Agglomeration

Authors: Guoqin Ge, Minhui Huang, Yazhou Zhou

Abstract:

The growth of the Chengdu-Chongqing urban agglomeration has been designated as a national strategy in China. Analyzing its spatial evolution characteristics is crucial for devising relevant development strategies. This paper enhances the gravitational model by using temporal distance as a factor. It applies this improved model to assess the economic interconnection and concentration level of each geographical unit within the Chengdu-Chongqing urban agglomeration between 2011 and 2019. On this basis, this paper examines the spatial correlation characteristics of economic agglomeration intensity and urban-rural development equalization by employing spatial autocorrelation analysis. The study findings indicate that the spatial integration in the Chengdu-Chongqing urban agglomeration is currently in the "point-axis" development stage. The spatial organization structure is becoming more flattened, and there is a stronger economic connection between the core of the urban agglomeration and the peripheral areas. The integration of the Chengdu-Chongqing urban agglomeration is currently hindered by conflicting interests and institutional heterogeneity between Chengdu and Chongqing. Additionally, the connections between the relatively secondary spatial units are largely loose and weak. The strength and scale of economic ties and the level of urban-rural equilibrium among spatial units within the Chengdu-Chongqing urban agglomeration have increased, but regional imbalances have continued to widen, and such positive and negative changes have been characterized by the spatial and temporal synergistic evolution of the "core-periphery". Ultimately, this paper presents planning ideas for the future integration development of the Chengdu-Chongqing urban agglomeration, drawing from the findings.

Keywords: integration, planning strategy, space organization, space evolution, urban agglomeration

Procedia PDF Downloads 49
25314 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 402
25313 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 217
25312 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques

Authors: Nartan Rajpriya

Abstract:

City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.

Keywords: urban green space, ecocity, IKONOS, LISS IV

Procedia PDF Downloads 386
25311 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 409
25310 Quantifying Temporal Variation of Volatile Organic Compounds and Their Ozone Forming Potential at Rural Atmosphere in Delhi

Authors: Amit Kumar, Bhupendra Pratap Singh, Manoj Singh, Monika Punia, Krishan Kumar, V. K. Jain

Abstract:

Ambient concentrations of volatile organic compounds (VOCs) were investigated in order to find out temporal variations and their ozone forming potentials (OFP) at rural site in Delhi National Capital Region during summer 2013. Sampling was performed for continuous five days, to identify the differences in working days and weekend VOCs concentration levels. Sampling and analytical procedure for VOCs were done using National Institute for Occupational Safety and Health (NIOSH) standard method. On each sampling day, VOCs samples were collected for 3-hours in the morning, afternoon and evening. There has been observed a noticeable contrast in the concentration of VOCs levels between working days and weekend. However, most of the VOCs showed diurnal fluctuations with higher concentrations in the morning and evening as compared to afternoon which might be due to change in meteorology. The results showed that mean toluene/benzene and m-/p-xylene/benzene ratios were higher in the afternoon while it was lower during morning and evening. The relative contribution of the VOCs to ozone formation, total propylene equivalent concentrations and OFP were calculated. Toluene was the most contributing organic contaminant to ozone formation as well as ambient VOCs concentrations. Results obtained in current study demonstrate that ozone formation at rural site in Delhi is probably limited by the emissions of VOCs.

Keywords: VOCs, rural, NIOSH, ozone forming potential, propylene equivalent concentration

Procedia PDF Downloads 529
25309 [Keynote Talk]: Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India

Authors: K. Shimola, M. Krishnaveni

Abstract:

This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.

Keywords: adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability

Procedia PDF Downloads 311
25308 The Development of Space-Time and Space-Number Associations: The Role of Non-Symbolic vs. Symbolic Representations

Authors: Letizia Maria Drammis, Maria Antonella Brandimonte

Abstract:

The idea that people use space representations to think about time and number received support from several lines of research. However, how these representations develop in children and then shape space-time and space-number mappings is still a debated issue. In the present study, 40 children (20 pre-schoolers and 20 elementary-school children) performed 4 main tasks, which required the use of more concrete (non-symbolic) or more abstract (symbolic) space-time and space-number associations. In the non-symbolic conditions, children were required to order pictures of everyday-life events occurring in a specific temporal order (Temporal sequences) and of quantities varying in numerosity (Numerical sequences). In the symbolic conditions, they were asked to perform the typical time-to-position and number-to-position tasks by mapping time-related words and numbers onto lines. Results showed that children performed reliably better in the non-symbolic Time conditions than the symbolic Time conditions, independently of age, whereas only pre-schoolers performed worse in the Number-to-position task (symbolic) as compared to the Numerical sequence (non-symbolic) task. In addition, only older children mapped time-related words onto space following the typical left-right orientation, pre-schoolers’ performance being somewhat mixed. In contrast, mapping numbers onto space showed a clear left-right orientation, independently of age. Overall, these results indicate a cross-domain difference in the way younger and older children process time and number, with time-related tasks being more difficult than number-related tasks only when space-time tasks require symbolic representations.

Keywords: space-time associations, space-number associations, orientation, children

Procedia PDF Downloads 336
25307 Effects on Cortical Thickness due to Musical Training in Elementary School Children: The Importance of Manual Structural Analysis

Authors: Saba Daneshmand, Assal Habibi

Abstract:

Studying musicians has become a prominent approach in macrostructural neuroscience research aimed at exploring the influence of environmental factors on brain development due to the significant impact of musical training on the brain. Although longitudinal studies can establish a direct causal relationship between musical training and brain development, only a limited number of studies have been conducted for a long enough duration. We recruited children for the experimental music group to participate in an after-school music program which was compared to the control group that had no such after-school program or enrichment activities. We ultimately calculated cortical thickness, a distinct measure of development. When a task such as playing an instrument occurs frequently, the associated neural processes become quicker and more refined over time, causing only the necessary pathways to remain; this, therefore, results in cortical thinning. The Brain and Music Lab has identified the anterior and posterior superior temporal gyrus, Heschl's gyrus, and the inferior regions to be involved with musicianship. The past study only found that the posterior superior temporal gyrus experienced a larger thinning in the music group compared to the control; however, we expect our ongoing study to produce similar but more intense results, including thinning in the other regions associated with musicianship. We believe the limited results of the previous study are due to its short duration which is why this ongoing and more lengthy longitudinal study is a significant and indispensable contribution in helping us discover the important developmental aspects of musical training.

Keywords: cortical thickness, music, neuroimaging, child development

Procedia PDF Downloads 16
25306 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
25305 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 368
25304 Recession Rate of Gangotri and Its Tributary Glacier, Garhwal Himalaya, India through Kinematic GPS Survey and Satellite Data

Authors: Harish Bisht, Bahadur Singh Kotlia, Kireet Kumar

Abstract:

In order to reconstruct past retreating rates, total area loss, volume change and shift in snout position were measured through multi-temporal satellite data from 1989 to 2016 and kinematic GPS survey from 2015 to 2016. The results obtained from satellite data indicate that in the last 27 years, Chaturangi glacier snout has retreated 1172.57 ± 38.3 m (average 45.07 ± 4.31 m/year) with a total area and volume loss of 0.626 ± 0.001 sq. Km and 0.139 Km³, respectively. The field measurements through differential global positioning system survey revealed that the annual retreating rate was 22.84 ± 0.05 m/year. The large variations in results derived from both the methods are probably because of higher difference in their accuracy. Snout monitoring of the Gangotri glacier during the ablation season (May to September) in the years 2005 and 2015 reveals that the retreating rate has been comparatively more declined than that shown by the earlier studies. The GPS dataset shows that the average recession rate is 10.26 ± 0.05 m/year. In order to determine the possible causes of decreased retreating rate, a relationship between debris thickness and melt rate was also established by using ablation stakes. The present study concludes that remote sensing method is suitable for large area and long term study, while kinematic GPS is more appropriate for the annual monitoring of retreating rate of glacier snout. The present study also emphasizes on mapping of all the tributary glaciers in order to assess the overall changes in the main glacier system and its health.

Keywords: Chaturangi glacier, Gangotri glacier, glacier snout, kinematic global positioning system, retreat rate

Procedia PDF Downloads 145
25303 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 140
25302 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121
25301 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 28
25300 Dido: An Automatic Code Generation and Optimization Framework for Stencil Computations on Distributed Memory Architectures

Authors: Mariem Saied, Jens Gustedt, Gilles Muller

Abstract:

We present Dido, a source-to-source auto-generation and optimization framework for multi-dimensional stencil computations. It enables a large programmer community to easily and safely implement stencil codes on distributed-memory parallel architectures with Ordered Read-Write Locks (ORWL) as an execution and communication back-end. ORWL provides inter-task synchronization for data-oriented parallel and distributed computations. It has been proven to guarantee equity, liveness, and efficiency for a wide range of applications, particularly for iterative computations. Dido consists mainly of an implicitly parallel domain-specific language (DSL) implemented as a source-level transformer. It captures domain semantics at a high level of abstraction and generates parallel stencil code that leverages all ORWL features. The generated code is well-structured and lends itself to different possible optimizations. In this paper, we enhance Dido to handle both Jacobi and Gauss-Seidel grid traversals. We integrate temporal blocking to the Dido code generator in order to reduce the communication overhead and minimize data transfers. To increase data locality and improve intra-node data reuse, we coupled the code generation technique with the polyhedral parallelizer Pluto. The accuracy and portability of the generated code are guaranteed thanks to a parametrized solution. The combination of ORWL features, the code generation pattern and the suggested optimizations, make of Dido a powerful code generation framework for stencil computations in general, and for distributed-memory architectures in particular. We present a wide range of experiments over a number of stencil benchmarks.

Keywords: stencil computations, ordered read-write locks, domain-specific language, polyhedral model, experiments

Procedia PDF Downloads 127
25299 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 393
25298 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
25297 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 333
25296 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 70
25295 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 178
25294 Reviewing Privacy Preserving Distributed Data Mining

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.

Keywords: data mining, distributed data mining, privacy protection, privacy preserving

Procedia PDF Downloads 525
25293 The Right to Data Portability and Its Influence on the Development of Digital Services

Authors: Roman Bieda

Abstract:

The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.

Keywords: data portability, digital market, GDPR, personal data

Procedia PDF Downloads 473
25292 Variations in Heat and Cold Waves over Southern India

Authors: Amit G. Dhorde

Abstract:

It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.

Keywords: heat wave, cold wave, southern India, decadal frequency

Procedia PDF Downloads 128
25291 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 68