Search results for: rayleigh number
9745 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.Keywords: receiver tube, heat convection, heat conduction, Nusselt number
Procedia PDF Downloads 3569744 Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder
Authors: Mustafa Soyler, Mustafa M. Yavuz, Bulent Yaniktepe, Coskun Ozalp
Abstract:
In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder.Keywords: CFD, drag coefficient, flow over cylinder, passive flow control
Procedia PDF Downloads 2379743 Familiarity with Nursing and Description of Nurses Duties
Authors: Narges Solaymani
Abstract:
Definition of Nurse: Nurse: A person who is educated and skilled in the field of scientific principles and professional skills of health care, treatment, and medical training of patients. Nursing is a very important profession in the societies of the world. Although in the past, all caregivers of the sick and disabled were called nurses, nowadays, a nurse is a person who has a university education in this field. There are nurses in bachelor's, master's, and doctoral degrees in nursing. New courses have been launched in the master's degree based on duty-oriented nurses. A nurse cannot have an independent treatment center but is a member of the treatment team in established treatment centers such as hospitals, clinics, or offices. Nurses can establish counseling centers and provide nursing services at home. According to the standards, the number of nurses should be three times the number of doctors or twice the number of hospital beds, or there should be three nurses for every thousand people. Also, international standards show that in the internal and surgical department, every 4 to 6 patients should have a nurse.Keywords: nurse, intensive care, CPR, bandage
Procedia PDF Downloads 689742 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 2819741 Beyond the “Breakdown” of Karman Vortex Street
Authors: Ajith Kumar S., Sankaran Namboothiri, Sankrish J., SarathKumar S., S. Anil Lal
Abstract:
A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number.Keywords: drag reduction, flow over circular cylinder, flow control, mixed convection flow, vortex shedding, vortex breakdown
Procedia PDF Downloads 4049740 Number of Perovskite Layers and the Effect of Antisolvent on Perovskite Solar Cell Efficiency
Authors: Ece Çetin, İsmail Boz, Mehtap Şafak Boroğlu
Abstract:
Energy is one of the most important components of production processes, economic activities, and daily life. Non-renewable energy sources cause serious environmental problems with the increase of greenhouse gases. Obtaining energy from renewable sources is also essential for sustainable economic growth. Solar energy is also an important renewable energy source with its unlimited and clean features. In this study, the effect of 1, 2, and 3 layers of perovskite film number and antisolvent dripping on perovskite based solar cell efficiency was investigated. The yield increased as the number of perovskite films increased. In addition, the yields obtained with the antisolvent dripped in the last 5 seconds are higher than the ones dropped in the last 17 seconds. The highest efficiency was obtained with 3 perovskite films, and antisolvent dropped in the last 5 seconds.Keywords: antisolvent, efficiency, perovskite, solar cell
Procedia PDF Downloads 1099739 Evaluation of Milk Production of an Algerian Rabbit Population Raised in Aures Area
Authors: Moumen Souad, Melizi Mohamed
Abstract:
In order to characterize rabbits does of an Aures local population raised in Algeria, a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10–15 min between the two weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21 g of milk/kit/day. The milk yield increased from 526, 1035, 1240 and 2801 g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation, respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits.Keywords: milk production, litter size, rabbit, Aures area, Algeria
Procedia PDF Downloads 2629738 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.Keywords: bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission
Procedia PDF Downloads 2239737 Technique and Use of Machine Readable Dictionary: In Special Reference to Hindi-Marathi Machine Translation
Authors: Milind Patil
Abstract:
Present paper is a discussion on Hindi-Marathi Morphological Analysis and generating rules for Machine Translation on the basis of Machine Readable Dictionary (MRD). This used Transformative Generative Grammar (TGG) rules to design the MRD. As per TGG rules, the suffix of a particular root word is based on its Tense, Aspect, Modality and Voice. That's why the suffix is very important for the word meanings (or root meanings). The Hindi and Marathi Language both have relation with Indo-Aryan language family. Both have been derived from Sanskrit language and their script is 'Devnagari'. But there are lots of differences in terms of semantics and grammatical level too. In Marathi, there are three genders, but in Hindi only two (Masculine and Feminine), the Natural gender is absent in Hindi. Likewise other grammatical categories also differ in their level of use. For MRD the suffixes (or Morpheme) are of particular root word for GNP (Gender, Number and Person) are based on its natural phenomena. A particular Suffix and Morphine change as per the need of person, number and gender. The design of MRD also based on this format. In first, Person, Number, Gender and Tense are key points than root words and suffix of particular Person, Number Gender (PNG). After that the inferences are drawn on the basis of rules that is (V.stem) (Pre.T/Past.T) (x) + (Aux-Pre.T) (x) → (V.Stem.) + (SP.TM) (X).Keywords: MRD, TGG, stem, morph, morpheme, suffix, PNG, TAM&V, root
Procedia PDF Downloads 3249736 Ecosystem Restoration: Remediation of Crude Oil-Polluted Soil by Leuceana leucocephala (Lam.) de Wit
Authors: Ayodele Adelusi Oyedeji
Abstract:
The study was carried out under a controlled environment with the aim of examining remediation of crude oil polluted soil. The germination rate, heights and girths, number of leaves and nodulation was determined following standard procedures. Some physicochemical (organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium and sodium) characteristics of soil used were determined using standard protocols. Results showed that at varying concentration of crude oil i.e 0 ml, 25 ml, 50 ml, 75 ml and 100 ml, Leuceana leucocephala had germination rate of 92%, 90%, 84%, 62% and 56% respectively, mean height of 73.70cm, 58.30cm, 49.50cm, 46.45cm and 41.80cm respectively after 16 weeks after planting (WAP), mean girth of 0.54mm, 0.34mm, 0.33mm, 0.21mm and 0.19mm respectively at 16 WAP, number of nodules 18, 10, 10, 6 and 2 respectively and number of leaves 24.00, 16.00, 13.00, 10.00 and 6.00 respectively. The organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium, and sodium decreased with the increase in the concentration of crude oil. Furthermore, as the concentration of crude oil increased the germination rate, height, girth, and number of leaves and nodules decreased, suggesting the effect of crude oil on Leuceana leucocephala. The plant withstands the varying concentration of the crude oil means that it could be used for the remediation of crude oil contaminated soil in the Niger Delta region of Nigeria.Keywords: ecosystem conservation, Leuceana leucocephala, phytoremediation, soil pollution
Procedia PDF Downloads 1099735 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 1239734 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor
Procedia PDF Downloads 2709733 Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field
Authors: B. Mahfoud, R. Harouz
Abstract:
The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained.Keywords: axisymmetric, counter-rotating, instabilities, magnetohydrodynamic, magnetic field, wavenumber
Procedia PDF Downloads 5489732 Timetabling Communities’ Demands for an Effective Examination Timetabling Using Integer Linear Programming
Authors: N. F. Jamaluddin, N. A. H. Aizam
Abstract:
This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.Keywords: demands, educational timetabling, integer linear programming, scheduling, university examination timetabling problem (UETP)
Procedia PDF Downloads 3379731 Cycle Number Estimation Method on Fatigue Crack Initiation Using Voronoi Tessellation and the Tanaka Mura Model
Authors: Mohammad Ridzwan Bin Abd Rahim, Siegfried Schmauder, Yupiter HP Manurung, Peter Binkele, Meor Iqram B. Meor Ahmad, Kiarash Dogahe
Abstract:
This paper deals with the short crack initiation of the material P91 under cyclic loading at two different temperatures, concluded with the estimation of the short crack initiation Wöhler (S/N) curve. An artificial but representative model microstructure was generated using Voronoi tessellation and the Finite Element Method, and the non-uniform stress distribution was calculated accordingly afterward. The number of cycles needed for crack initiation is estimated on the basis of the stress distribution in the model by applying the physically-based Tanaka-Mura model. Initial results show that the number of cycles to generate crack initiation is strongly correlated with temperature.Keywords: short crack initiation, P91, Wöhler curve, Voronoi tessellation, Tanaka-Mura model
Procedia PDF Downloads 1019730 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 2589729 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process
Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape
Procedia PDF Downloads 4799728 Multi-Pass Shape Drawing Process Design for Manufacturing of Automotive Reinforcing Agent with Closed Cross-Section Shape using Finite Element Method Analysis
Authors: Mok-Tan Ahn, Hyeok Choi, Joon-Hong Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factor influencing the productivity and moldability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and moldability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. The purpose of this study, Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: automotive reinforcing agent, multi-pass shape drawing, automotive parts, FEM analysis
Procedia PDF Downloads 4549727 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1059726 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 3589725 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation
Procedia PDF Downloads 1819724 Analysing Environmental Licensing of Infrastructure Projects in Brazil
Authors: Ronaldo Seroa Da Motta, Gabriela Santiago
Abstract:
The main contribution of this study is the identification of the factors influencing the environmental licensing process of infrastructure projects in Brazil. These factors will be those that reflect the technical characteristics of the project, the corporate governance of the entrepreneur, and the institutional and regulatory governance of the environmental agency, including the number of interventions by non-licensing agencies. The model conditions these variables to the licensing processing time of 34 infrastructure projects. Our results indicated that the conditions would be more sensitive to the type of enterprise, complexity as in gas pipelines and hydroelectric plants in the most vulnerable biome with a greater value of the enterprise or the entrepreneur's assets, together with the number of employees of the licensing agency. The number of external interventions by other non-licensing institutions does not affect the licensing time. Such results challenge the current criticism that environmental licensing has been often pointed out as a barrier to speed up investments in infrastructure projects in Brazil due to the participation of civil society and other non-licensing institutions.Keywords: environmental licensing, condionants, Brazil, timing process
Procedia PDF Downloads 1349723 Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles
Authors: Zhuo Cheng, Gaohang Cui, Yang Zheng, Zhiqiang-Pan
Abstract:
To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength.Keywords: fly ash, saline soil, seasonally frozen area, significance analysis, qualitative analysis
Procedia PDF Downloads 1479722 Determination of Some Agricultural Characters of Developed Pea (Pisum sativum L.) Lines
Authors: Ercan Ceyhan, Mehmet Ali Avci
Abstract:
This research was made during the 2015 growing periods in the trial filed of ‘Research Station for Department of Field Crops, Agricultural Faculty, Selcuk University’ according to ‘Randomized Blocks Design’ with 3 replications. Research material was the following pea lines; PS16, PS18, PS21, PS23, PS24, PS25, PS36, PS47, PS49, PS51, PS54, PS58, PS67, PS69, PS71, PS73, PS83, PS84, PS87 and PSKY and three cultivars and other 2 commercial varieties named as Bolero, Rondo and Ultrello. Some agronomical characteristics such as plant height (cm) number of pod per plant number of seed per pod number of seed per plant 100 seed weight (g) and seed yield (kg ha-1) were determined. Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics. Nevertheless, similar researches should be continued in different locations and years.Keywords: agricultural characters, pea, Pisum sativum, seed yield
Procedia PDF Downloads 2399721 A Proof for Goldbach's Conjecture
Authors: Hashem Sazegar
Abstract:
In 1937, Vinograd of Russian Mathematician proved that each odd large number can be shown by three primes. In 1973, Chen Jingrun proved that each odd number can be shown by one prime plus a number that has maximum two primes. In this article, we state one proof for Goldbach’conjecture. Introduction: Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was first proved by Chebyshev in 1850, which is why postulate is also called the Bertrand-Chebyshev theorem. Legendre’s conjecture states that there is a prime between n2 and (n+1)2 for every positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are; (i) Twin prime conjecture: There are infinitely many primes p such that p+2 is a prime. (ii) Goldbach’s conjecture: Every even integer n > 2 can be written asthe sum of two primes. (iii) Are there infinitely many primes p such that p−1 is a perfect square? Problems (i), (ii), and (iii) are open till date.Keywords: Bertrand-Chebyshev theorem, Landau’s problems, twin prime, Legendre’s conjecture, Oppermann’s conjecture
Procedia PDF Downloads 4029720 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers
Authors: H. Asadi, H. Naderan Tahan
Abstract:
The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics
Procedia PDF Downloads 2899719 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1209718 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction
Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi
Abstract:
Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping
Procedia PDF Downloads 5069717 Investigation of Some Sperm Quality Parameters of Farmed and Wild-Caught Meagre (Argyrosomus regius Asso, 1801)
Authors: Şefik Surhan Tabakoğlu, Hipolito Fernández-Palacios, Dominique Schuchardt, Mahmut Ali Gökçe, Celal Erbaş, Oğuz Taşbozan
Abstract:
This study aimed to clarify some sperm quality parameters such as volumetric sperm quantity, motility, motility duration, sperm density, total number of spermatozoa and pH of meagre (Argyrosomus regius ASSO, 1801) individuals kept in farming conditions and caught from wild (las palmas, gran canary). The sperm was collected in glass tubes graded in millimetres and sperm volume registered immediately following collection by abdominal massage. The sperm quality parameters including motility, total number of spermatozoa and spermatozoa density were determined with computer assisted sperm analysis (CASA) program. The duration of spermatozoa movement was assessed using a sensitive chronometer (1/100s) that was started simultaneously with the addition of activation solution into the sample. Sperm pH was measured with standard pH electrodes within five minutes of sampling. At the end of the study, while amount of sperm (5.20±0.33 ml), duration of motility (7.23±0.7 m) and total number of spermatozoa (131.40±12.22 x10^9) were different statistically (p < 0,05), motility (% 81.03±6.59), pH (7.30±0.08), sperm density (25.27±9.42 x10^9/ml) and morphologic parameters were not significantly different between the two groups. According to our results, amount of sperm, duration of motility and total number of spermatozoa were better in farmed group than that of the other group.Keywords: Seriola rivoliana, meagre, sperm quality, motility, motility duration
Procedia PDF Downloads 3759716 Characteristics of the Wake behind a Heated Cylinder in Relatively High Reynolds Number
Authors: Morteza Khashehchi, Kamel Hooman
Abstract:
Thermal effects on the dynamics and stability of the flow past a circular cylinder operating in the mixed convection regime is studied experimentally for Reynolds number (ReD) between 1000 and 4000, and different cylinder wall temperatures (Tw) between 25 and 75°C by means of Particle Image Velocimetry (PIV). The experiments were conducted in a horizontal wind tunnel with the heated cylinder placed horizontally. With such assumptions, the direction of the thermally induced buoyancy force acting on the fluid surrounding the heated cylinder would be perpendicular to the flow direction. In each experiment, to acquire 3000 PIV image pairs, the temperature and Reynolds number of the approach flow were held constant. By adjusting different temperatures in different Reynolds numbers, the corresponding Richardson number (RiD = Gr/Re^2) was varied between 0:0 (unheated) and 10, resulting in a change in the heat transfer process from forced convection to mixed convection. With increasing temperature of the wall cylinder, significant modifications of the wake flow pattern and wake vortex shedding process were clearly revealed. For cylinder at low wall temperature, the size of the wake and the vortex shedding process are found to be quite similar to those of an unheated cylinder. With high wall temperature, however, the high temperature gradient in the wake shear layer creates a type of vorticity with opposite sign to that of the shear layer vorticity. This temperature gradient vorticity weakens the strength of the shear layer vorticity, causing delay in reaching the recreation point. In addition to the wake characteristics, the shedding frequency for the heated cylinder is determined for all aforementioned cases. It is found that, as the cylinder wall is heated, the organization of the vortex shedding is altered and the relative position of the first detached vortices with respect to the second one is changed. This movement of the first detached vortex toward the second one increases the frequency of the shedding process. It is also found that the wake closure length decreases with increasing the Richardson number.Keywords: heated cylinder, PIV, wake, Reynolds number
Procedia PDF Downloads 389