Search results for: pseudo-out-of-sample forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 532

Search results for: pseudo-out-of-sample forecasting

172 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
171 The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future.

Keywords: climate change, climate impact, air quality, air pollution, Thailand

Procedia PDF Downloads 355
170 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 21
169 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
168 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
167 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh

Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran

Abstract:

In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.

Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques

Procedia PDF Downloads 249
166 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 175
165 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
164 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 45
163 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 149
162 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 145
161 Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA

Authors: Glenda Marie D. Balitaan

Abstract:

The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters.

Keywords: inventory management, integer linear programming, inventory management system, feed mill

Procedia PDF Downloads 83
160 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers

Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin

Abstract:

The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.

Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference

Procedia PDF Downloads 71
159 Coarse Grid Computational Fluid Dynamics Fire Simulations

Authors: Wolfram Jahn, Jose Manuel Munita

Abstract:

While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.

Keywords: CFD, fire simulations, emergency response, forecast

Procedia PDF Downloads 318
158 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 142
157 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 282
156 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices

Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe

Abstract:

An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.

Keywords: electricity prices, realized volatility, semivariances, volatility spillovers

Procedia PDF Downloads 175
155 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity

Procedia PDF Downloads 258
154 A Case Study on Management of Coal Seam Gas by-Product Water

Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir

Abstract:

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Keywords: coal seam gas (CSG), cleat water, hydro-fracking, product water

Procedia PDF Downloads 420
153 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
152 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 71
151 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: photovoltaic, urban residences, technology forecasting, prospecting

Procedia PDF Downloads 300
150 Career Path: A Tool to Support Talent Management

Authors: Rashi Mahato

Abstract:

Talent management represents an organization’s effort to attract, develop and retain highly skilled and valuable employees. The goal is to have people with capabilities and commitment needed for current and future organizational success. The organizational talent pool is its managerial talent referred to as leadership pipeline. It is managed through various systems and processes to help the organization source, reward, evaluate, develop and move employees into various functions and roles. The pipeline bends, turns, and sometimes breaks as organizations identify who is 'ready now' and who is 'on track' for larger leadership roles. From this perspective, talent management designs structured approach and a robust mechanism for high potential employees to meet organization’s needs. The paper attempts to provide a roadmap and a structured approach towards building a high performing organization through well-defined career path. Managers want career paths to be defined, so that an adequate number of individuals may be identified and prepared to fill future vacancies. Once career progression patterns are identified, more systematic forecasting of talent requirements is possible. For the development of senior management talent or leadership team, career paths are needed as guidelines for talent management across functional and organizational lines. Career path is one of the important tools for talent management and aligning talent with business strategy. This paper briefly describes the approach for career path and the concept of

Keywords: career path, career path framework, lateral movement, talent management

Procedia PDF Downloads 215
149 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set

Authors: Seema Vaidya

Abstract:

Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.

Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth

Procedia PDF Downloads 398
148 The Effects of Scientific Studies on the Future Fashion Trends

Authors: Basak Ozkendirci

Abstract:

The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.

Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles

Procedia PDF Downloads 338
147 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 82
146 Earnings Volatility and Earnings Predictability

Authors: Yosra Ben Mhamed

Abstract:

Most previous research that investigates the importance of earnings volatility for a firm’s value has focused on the effects of earnings volatility on the cost of capital. Many study illustrate that earnings volatility can reduce the firm’s value by enhancing the cost of capital. However, a few recent studies directly examine the relation between earnings volatility and subsequent earnings levels. In our study, we further explore the role of volatility in forecasting. Our study makes two primary contributions to the literature. First, taking into account the level of current firm’s performance, we provide causal theory to the link between volatility and earnings predictability. Nevertheless, previous studies testing the linearity of this relationship have not mentioned any underlying theory. Secondly, our study contributes to the vast body of fundamental analysis research that identifies a set of variables that improve valuation, by showing that earnings volatility affects the estimation of future earnings. Projections of earnings are used by valuation research and practice to derive estimates of firm value. Since we want to examine the impact of volatility on earnings predictability, we sort the sample into three portfolios according to the level of their earnings volatility in ascending order. For each quintile, we present the predictability coefficient. In a second test, each of these portfolios is, then, sorted into three further quintiles based on their level of current earnings. These yield nine quintiles. So we can observe whether volatility strongly predicts decreases on earnings predictability only for highest quintile of earnings. In general, we find that earnings volatility has an inverse relationship with earnings predictability. Our results also show that the sensibility of earnings predictability to ex-ante volatility is more pronounced among profitability firms. The findings are most consistent with overinvestment and persistence explanations.

Keywords: earnings volatility, earnings predictability, earnings persistence, current profitability

Procedia PDF Downloads 433
145 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 119
144 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 162
143 Complex Network Analysis of Seismicity and Applications to Short-Term Earthquake Forecasting

Authors: Kahlil Fredrick Cui, Marissa Pastor

Abstract:

Earthquakes are complex phenomena, exhibiting complex correlations in space, time, and magnitude. Recently, the concept of complex networks has been used to shed light on the statistical and dynamical characteristics of regional seismicity. In this work, we study the relationships and interactions of seismic regions in Chile, Japan, and the Philippines through weighted and directed complex network analysis. Geographical areas are digitized into cells of fixed dimensions which in turn become the nodes of the network when an earthquake has occurred therein. Nodes are linked if a correlation exists between them as determined and measured by a correlation metric. The networks are found to be scale-free, exhibiting power-law behavior in the distributions of their different centrality measures: the in- and out-degree and the in- and out-strength. The evidence is also found of preferential interaction between seismically active regions through their degree-degree correlations suggesting that seismicity is dictated by the activity of a few active regions. The importance of a seismic region to the overall seismicity is measured using a generalized centrality metric taken to be an indicator of its activity or passivity. The spatial distribution of earthquake activity indicates the areas where strong earthquakes have occurred in the past while the passivity distribution points toward the likely locations an earthquake would occur whenever another one happens elsewhere. Finally, we propose a method that would project the location of the next possible earthquake using the generalized centralities coupled with correlations calculated between the latest earthquakes and a geographical point in the future.

Keywords: complex networks, correlations, earthquake, hazard assessment

Procedia PDF Downloads 212