Search results for: partially observable Markov decision processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9864

Search results for: partially observable Markov decision processes

9504 Personality as a Determinant of Career Decision-Making Difficulties in a Higher Educational Institution in Ghana

Authors: Gladys Maame Akua Setordzie

Abstract:

Decision on one’s future career is said to have both beneficial and detrimental effects on one’s mental health, social and economic standing later in life, making it an important developmental problem for young people. In this light, the study’s overarching goal was to assess how different personality traits serve as a determinant of career decision-making difficulties experienced by university students in Ghana. Specifically, for the purpose of shaping the future of individualized career counselling support, the study investigated whether the “Big Five” personality traits influenced the difficulties students at the University of Ghana encounter while making career decisions. Cross-sectional survey design using a stratified random sampling technique, sampled 494 undergraduate students from the University of Ghana, who completed the Big Five Questionnaire and the Career Decision-making Difficulties Questionnaire. Hierarchical multiple regression analyses indicated that neuroticism, consciousness, and openness, accounted for a significant proportion of the variance in career decision-making difficulties. This study provides empirical evidence to support the idea that neuroticism is not necessarily a negative emotion when it comes to career decisionmaking, as has been suggested in previous studies, but rather it allows students to perform better in career decision-making. These results suggests that personality traits play a significant role in the career decision-making process of students of the University of Ghana. Therefore, a better understanding of how different personal and interpersonal factors impact career indecision in students could help career counsellors develop more focused vocational and career guidance interventions.

Keywords: career decision-making difficulties, dysfunctional career beliefs, personality traits, young people

Procedia PDF Downloads 101
9503 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems

Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos

Abstract:

Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.

Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system

Procedia PDF Downloads 183
9502 Partially Phosphorylated Polyvinyl Phosphate-PPVP Composite: Synthesis and Its Potentiality for Zr (IV) Extraction from an Acidic Medium

Authors: Khaled Alshamari

Abstract:

Synthesized partially phosphorylated polyvinyl phosphate derivative (PPVP) was functionalized to extract Zirconium (IV) from Egyptian zircon sand. The specifications for the PPVP composite were approved effectively via different techniques, namely, FT-IR, XPS, BET, EDX, TGA, HNMR, C-NMR, GC-MS, XRD and ICP-OES analyses, which demonstrated a satisfactory synthesis of PPVP and zircon dissolution from Egyptian zircon sand. Factors controlling parameters, such as pH values, shaking time, initial zirconium concentration, PPVP dose, nitrate ions concentration, co-ions, temperature and eluting agents, have been optimized. At 25 ◦C, pH 0, 20 min shaking, 0.05 mol/L zirconium ions and 0.5 mol/L nitrate ions, PPVP has an exciting preservation potential of 195 mg/g, equivalent to 390 mg/L zirconium ions. From the extraction–distribution isotherm, the practical outcomes of Langmuir’s modeling are better than the Freundlich model, with a theoretical value of 196.07 mg/g, which is more in line with the experimental results of 195 mg/g. The zirconium ions adsorption onto the PPVP composite follows the pseudo-second-order kinetics with a theoretical capacity value of 204.08 mg/g. According to thermodynamic potential, the extraction process was expected to be an exothermic, spontaneous and beneficial extraction at low temperatures. The thermodynamic parameters ∆S (−0.03 kJ/mol), ∆H (−12.22 kJ/mol) and ∆G were also considered. As the temperature grows, ∆G values increase from −2.948 kJ/mol at 298 K to −1.941 kJ/mol at 338 K. Zirconium ions may be eluted from the working loaded PPVP by 0.025M HNO₃, with a 99% efficiency rate. It was found that zirconium ions revealed good separation factors towards some co-ions such as Hf⁴+ (28.82), Fe³+ (10.64), Ti⁴+ (28.82), V⁵+ (86.46) and U⁶+ (68.17). A successful alkali fusion technique with NaOH flux followed by the extraction with PPVP is used to obtain a high-purity zirconia concentrate with a zircon content of 72.77 % and a purity of 98.29%. As a result of this, the improved factors could finally be used.

Keywords: zirconium extraction, partially phosphorylated polyvinyl phosphate (PPVP), acidic medium, zircon

Procedia PDF Downloads 66
9501 Evalution of the Impact on Improvement of Bank Manager Decision Making

Authors: Farzane Sadatnia, Bahram Fathi

Abstract:

Today, all public and private organizations have found that the management of the world for key information related to the activities of a staff and its main essence and philosophy, though they constitute the management information systems are very helpful in this respect the right to apply systems can save a lot in terms of economic organizations including reducing the time decision - making, improve the quality of decision making, and cost savings to bring information systems is a backup system that can never be instead of logic and human reasoning, which can be used in the series is spreading, providing resources, and provide the necessary facilities, provide better services for users, balanced budget allocation, determine strengths and weaknesses and previous plans to review the current decisions and especially the decision . Hence; in this study attempts to the effect of an information system on a review of the organization.

Keywords: information system, planning, organization, coordination, control

Procedia PDF Downloads 475
9500 Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum

Authors: Sahira N. Muslim, Alaa N. Mohammed, Saba Saadoon Khazaal, Batool Kadham Salman, Israa M. S. AL-Kadmy, Sraa N. Muslim, Ahmed S. Dwaish, Sawsan Mohammed Kareem, Sarah N. Aziz, Ruaa A. Jasim

Abstract:

Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of Penicillium expansum A4 isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against Pseudomonas aeruginosa and S. aureus and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime.

Keywords: ceftazidime, Penicillium expansum, tannase, antimicrobial activity

Procedia PDF Downloads 741
9499 Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties

Authors: Fahed Alrshoudi

Abstract:

Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates.

Keywords: compressive strength, tensile Strength, date palm seeds, aggregate

Procedia PDF Downloads 130
9498 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms

Authors: Sanjiti Sharma, Carol Seger

Abstract:

Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.

Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias

Procedia PDF Downloads 26
9497 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations

Authors: Tomáš Vyčítal

Abstract:

In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.

Keywords: decision-making support, fuzzy systems, simulation, railway, transport

Procedia PDF Downloads 139
9496 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection

Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda

Abstract:

The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.

Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point

Procedia PDF Downloads 425
9495 A Script for Presentation to the Management of a Teaching Hospital on DXplain Clinical Decision Support System

Authors: Jacob Nortey

Abstract:

Introduction: In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. According to the Ibero – American Study of Adverse Effects (IBEAS), about 10% of hospital patients suffer from secondary damage during the care process, and approximately 2% die from this process. Many clinical decision support systems have been developed to help mitigate some healthcare medical errors. Method: Relevant databases were searched, including ones that were peculiar to the clinical decision support system (that is, using google scholar, Pub Med and general google searches). The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of Dxplain Clinical decision support systems. Results: Inferences drawn from the articles showed high usage of Dxplain clinical decision support system for problem-based learning among students in developed countries as against little or no usage among students in Low – and Middle – income Countries. The results also indicated high usage among general practitioners. Conclusion: Despite the challenges Dxplain presents, the benefits of its usage to clinicians and students are enormous.

Keywords: dxplain, clinical decision support sytem, diagnosis, support systems

Procedia PDF Downloads 79
9494 IT Investment Decision Making: Case Studies on the Implementation of Contactless Payments in Commercial Banks of Kazakhstan

Authors: Symbat Moldabekova

Abstract:

This research explores the practice of decision-making in commercial banks in Kazakhstan. It focuses on recent technologies, such as contactless payments and QR code, and uses interviews with bank executives and industry practitioners to gain an understanding of how decisions are made and the role of financial assessment methods. The aim of the research is (1) to study the importance of financial techniques to evaluate IT investments; (2) to understand the role of different expert groups; (3) to explore how market trends and industry features affect decisions on IT; (4) to build a model that defines the real practice of decision-making on IT in commercial banks in Kazakhstan. The theoretical framework suggests that decision-making on IT is a socially constructed process, where actor groups with different background interact and negotiate with each other to develop a shared understanding of IT and to make more effective decisions. Theory and observations suggest that the more parties involved in the process of decision-making, the higher the possibility of disagreements between them. As each actor group has their views on the rational decision on an IT project, it is worth exploring how the final decision is made in practice. Initial findings show that the financial assessment methods are used as a guideline and do not play a big role in the final decision. The commercial banks of Kazakhstan tend to study experience of neighboring countries before adopting innovation. Implementing contactless payments is widely regarded as pinnacle success factor due to increasing competition in the market. First-to-market innovations are considered as priorities therefore, such decisions can be made with exemption of some certain actor groups from the process. Customers play significant role and they participate in testing demo versions of the products before bringing innovation to the market. The study will identify the viewpoints of actors in the banking sector on a rational decision, and the ways decision-makers from a variety of disciplines interact with each other in order to make a decision on IT in retail banks.

Keywords: actor groups, decision making, technology investment, retail banks

Procedia PDF Downloads 122
9493 Technology Management for Early Stage Technologies

Authors: Ming Zhou, Taeho Park

Abstract:

Early stage technologies have been particularly challenging to manage due to high degrees of their numerous uncertainties. Most research results directly out of a research lab tend to be at their early, if not the infant stage. A long while uncertain commercialization process awaits these lab results. The majority of such lab technologies go nowhere and never get commercialized due to various reasons. Any efforts or financial resources put into managing these technologies turn fruitless. High stake naturally calls for better results, which make a patenting decision harder to make. A good and well protected patent goes a long way for commercialization of the technology. Our preliminary research showed that there was not a simple yet productive procedure for such valuation. Most of the studies now have been theoretical and overly comprehensive where practical suggestions were non-existent. Hence, we attempted to develop a simple and highly implementable procedure for efficient and scalable valuation. We thoroughly reviewed existing research, interviewed practitioners in the Silicon Valley area, and surveyed university technology offices. Instead of presenting another theoretical and exhaustive research, we aimed at developing a practical guidance that a government agency and/or university office could easily deploy and get things moving to later steps of managing early stage technologies. We provided a procedure to thriftily value and make the patenting decision. A patenting index was developed using survey data and expert opinions. We identified the most important factors to be used in the patenting decision using survey ratings. The rating then assisted us in generating good relative weights for the later scoring and weighted averaging step. More importantly, we validated our procedure by testing it with our practitioner contacts. Their inputs produced a general yet highly practical cut schedule. Such schedule of realistic practices has yet to be witnessed our current research. Although a technology office may choose to deviate from our cuts, what we offered here at least provided a simple and meaningful starting point. This procedure was welcomed by practitioners in our expert panel and university officers in our interview group. This research contributed to our current understanding and practices of managing early stage technologies by instating a heuristically simple yet theoretical solid method for the patenting decision. Our findings generated top decision factors, decision processes and decision thresholds of key parameters. This research offered a more practical perspective which further completed our extant knowledge. Our results could be impacted by our sample size and even biased a bit by our focus on the Silicon Valley area. Future research, blessed with bigger data size and more insights, may want to further train and validate our parameter values in order to obtain more consistent results and analyze our decision factors for different industries.

Keywords: technology management, early stage technology, patent, decision

Procedia PDF Downloads 342
9492 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
9491 EWMA and MEWMA Control Charts for Monitoring Mean and Variance in Industrial Processes

Authors: L. A. Toro, N. Prieto, J. J. Vargas

Abstract:

There are many control charts for monitoring mean and variance. Among these, the X y R, X y S, S2 Hotteling and Shewhart control charts, for mentioning some, are widely used for monitoring mean a variance in industrial processes. In particular, the Shewhart charts are based on the information about the process contained in the current observation only and ignore any information given by the entire sequence of points. Moreover, that the Shewhart chart is a control chart without memory. Consequently, Shewhart control charts are found to be less sensitive in detecting smaller shifts, particularly smaller than 1.5 times of the standard deviation. These kind of small shifts are important in many industrial applications. In this study and effective alternative to Shewhart control chart was implemented. In case of univariate process an Exponentially Moving Average (EWMA) control chart was developed and Multivariate Exponentially Moving Average (MEWMA) control chart in case of multivariate process. Both of these charts were based on memory and perform better that Shewhart chart while detecting smaller shifts. In these charts, information the past sample is cumulated up the current sample and then the decision about the process control is taken. The mentioned characteristic of EWMA and MEWMA charts, are of the paramount importance when it is necessary to control industrial process, because it is possible to correct or predict problems in the processes before they come to a dangerous limit.

Keywords: control charts, multivariate exponentially moving average (MEWMA), exponentially moving average (EWMA), industrial control process

Procedia PDF Downloads 354
9490 As Evolved Mechanisms and Cultural Modeling Affect Child Gender Attribution

Authors: Stefano Federici, Alessandro Lepri, Antonella Carrera

Abstract:

Kessler and McKenna in the seventies, and recently Federici and Lepri investigated how an individual attributes gender to a person. By administering nudes of human figures, the scholars have found that the penis more than the vagina and the male sexual characteristics more than the female ones are significantly more salient in the gender attribution process. Federici and Lepri suggested that the asymmetrical salience of sexual characteristics is attributable to evolved decision-making processes for the solution of gender attribution problems to avoid the greatest danger of an (angry) adult male. The present study has observed the behaviour of 60 children, aged between 3 and 6 years, and their parents verifying whether the child gender attribution mechanisms are permeable to cultural stereotypes. The participating children were asked to make a male or a female on a tablet by combining 12 human physical characteristics (long hair, short hair, wide hips, narrow hips, breasts, flat chest, body hair, hairless body, penis, vagina, male face, and female face) and four cloths (male t-shirt, female t-shirt, pants, and skirt) by superimposing one or more of them on a sexually neutral manikin. On the tablet was installed an App, created by authors, to replicate the Kessler and McKenna and Federici and Lepri previous studies. One of the parents of each of the participating children was asked to make a male or a female using the same apparatus used by children. In addition, the participating parents were asked to complete a test, as proposed by Federici and Lepri in their previous study, to compare adult and child processes of gender attribution. The results suggested that children are affected both by evolved mechanisms as adults were (e.g., taking less time to make a male than a female, using the penis more often than the vagina), and by cultural modeling of parental and environmental gender stereotypes (e.g., the genitals were often covered with pants in case the delivery was to make a male and a skirt in the case was to make a female).

Keywords: biological sex, cognitive biases, cultural modeling, gender attribution, evolved decision-making processes

Procedia PDF Downloads 130
9489 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.

Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making

Procedia PDF Downloads 75
9488 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 75
9487 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran

Authors: Safieh Javadinejad

Abstract:

In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.

Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling

Procedia PDF Downloads 292
9486 Practical Application of Simulation of Business Processes

Authors: Markéta Gregušová, Vladimíra Schindlerová, Ivana Šajdlerová, Petr Mohyla, Jan Kedroň

Abstract:

Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. To maintain your place among the successful companies on the market today or to come up with a revolutionary business idea is much more difficult than before. Each new or improved method, tool, or approach that can improve the functioning of business processes or even of the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk, which makes it possible to find the optimal parameters of manufacturing processes and systems. The paper presents an example of use of simulation for solution of the bottleneck problem in the concrete company.

Keywords: practical applications, business processes, systems, simulation

Procedia PDF Downloads 542
9485 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach

Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka

Abstract:

Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.

Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank

Procedia PDF Downloads 166
9484 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier

Procedia PDF Downloads 466
9483 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 42
9482 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 462
9481 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 140
9480 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 408
9479 Employees and Their Perception of Soft Skills on Their Employability

Authors: Sukrita Mukherjee, Anindita Chaudhuri

Abstract:

Soft skills are a crucial aspect for employees, and these skills are not confined to any particular field rather, it guarantees further career growth and job opportunities for employees who are seeking growth. Soft skills are also regarded as personality-specific skills that are observable and are qualitative in nature, which determines an employee’s strengths as a leader. When an employee intends to hold his job, then the person must make effective use of his personal resources, that, in turn, impacts his employability in a positive manner. An employee at his workplace is expected to make effective use of his personal resources. The resources that are to be used by the employee are generally of two types. First type of resources are occupation related, which is related with the educational background of the employee, and the second type of resources are the psychological resources of the employee, such as self-knowledge, career orientation awareness, sense of purpose and emotional literacy, that are considered crucial for an employee in his workplace. The present study is a qualitative study which includes 10 individuals working in IT Sector and Service Industry, respectively. For IT sector, graduate people are considered, and for the Service Industry, individuals who have done a Professional course in order to get into the industry are considered. The emerging themes from the findings after thematic analysis reveal that different aspect of Soft skills such as communication, decision making, constant learning, keeping oneself updated with the latest technological advancement, emotional intelligence are some of the important factors that helps an employee not only to sustain his job, but also grow in his workplace.

Keywords: employabiliy, soft skils, employees, resources, workplace

Procedia PDF Downloads 63
9478 Decision-Making in Higher Education: Case Studies Demonstrating the Value of Institutional Effectiveness Tools

Authors: Carolinda Douglass

Abstract:

Institutional Effectiveness (IE) is the purposeful integration of functions that foster student success and support institutional performance. IE is growing rapidly within higher education as it is increasingly viewed by higher education administrators as a beneficial approach for promoting data-informed decision-making in campus-wide strategic planning and execution of strategic initiatives. Specific IE tools, including, but not limited to, project management; impactful collaboration and communication; commitment to continuous quality improvement; and accountability through rigorous evaluation; are gaining momentum under the auspices of IE. This research utilizes a case study approach to examine the use of these IE tools, highlight successes of this use, and identify areas for improvement in the implementation of IE tools within higher education. The research includes three case studies: (1) improving upon academic program review processes including the assessment of student learning outcomes as a core component of program quality; (2) revising an institutional vision, mission, and core values; and (3) successfully navigating an institution-wide re-accreditation process. Several methods of data collection are embedded within the case studies, including surveys, focus groups, interviews, and document analyses. Subjects of these methods include higher education administrators, faculty, and staff. Key findings from the research include areas of success and areas for improvement in the use of IE tools associated with specific case studies as well as aggregated results across case studies. For example, the use of case management proved useful in all of the case studies, while rigorous evaluation did not uniformly provide the value-added that was expected by higher education decision-makers. The use of multiple IE tools was shown to be consistently useful in decision-making when applied with appropriate awareness of and sensitivity to core institutional culture (for example, institutional mission, local environments and communities, disciplinary distinctions, and labor relations). As IE gains a stronger foothold in higher education, leaders in higher education can make judicious use of IE tools to promote better decision-making and secure improved outcomes of strategic planning and the execution of strategic initiatives.

Keywords: accreditation, data-informed decision-making, higher education management, institutional effectiveness tools, institutional mission, program review, strategic planning

Procedia PDF Downloads 116
9477 Knowledge Management Strategies within a Corporate Environment of Papers

Authors: Daniel J. Glauber

Abstract:

Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.

Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification

Procedia PDF Downloads 442
9476 Understanding Tacit Knowledge and DIKW

Authors: Bahadir Aydin

Abstract:

Today it is difficult to reach accurate knowledge because of mass data. This huge data makes the environment more and more caotic. Data is a main piller of intelligence. There is a close tie between knowledge and intelligence. Information gathered from different sources can be modified, interpreted and classified by using knowledge development process. This process is applied in order to attain intelligence. Within this process the effect of knowledge is crucial. Knowledge is classified as explicit and tacit knowledge. Tacit knowledge can be seen as "only the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose for all organization is to be succesful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. By the help of process the decision-maker can be presented with a clear holistic understanding, as early as possible in the decision making process. Planning, execution and assessments are the key functions that connects to information to knowledge. Altering from the current traditional reactive approach to a proactive knowledge development approach would reduce extensive duplication of work in the organization. By new approach to this process, knowledge can be used more effectively.

Keywords: knowledge, intelligence cycle, tacit knowledge, KIDW

Procedia PDF Downloads 519
9475 Evaluation of Suitable Housing System for Adoption in Addis Ababa

Authors: Yidnekachew Daget, Hong Zhang

Abstract:

The decision-making process in order to select the suitable housing system for application in housing construction has been a challenge for many developing countries. This study evaluates the decision process to identify the suitable housing systems for adoption in Addis Ababa. Ten industrialized housing systems were considered as alternatives for comparison. These systems have been used in a housing development in different parts of the world. A relevant literature review and contextual analysis were conducted. An analytical hierarchy process and an Expert Choice Comparion platform were employed as a research technique and tool to evaluate the professionals’ level of preferences with regard to the housing systems. The findings revealed the priority rank and characteristics of the suitable housing systems to be adapted for application in housing development. The decision criteria and the analytical process used in this study can help the decision-makers and the housing developers in developing countries make effective evaluations and decisions.

Keywords: analytical hierarchy process, decision-making, expert choice comparion, industrialized housing systems

Procedia PDF Downloads 264