Search results for: morphology detection
4486 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers
Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz
Abstract:
Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.Keywords: cells integration, electrospun fiber, PHBV, surface characterization
Procedia PDF Downloads 1184485 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 3204484 Detecting Anomalous Matches: An Empirical Study from National Basketball Association
Authors: Jacky Liu, Dulani Jayasuriya, Ryan Elmore
Abstract:
Match fixing and anomalous sports events have increasingly threatened the integrity of professional sports, prompting concerns about existing detection methods. This study addresses prior research limitations in match fixing detection, improving the identification of potential fraudulent matches by incorporating advanced anomaly detection techniques. We develop a novel method to identify anomalous matches and player performances by examining series of matches, such as playoffs. Additionally, we investigate bettors' potential profits when avoiding anomaly matches and explore factors behind unusual player performances. Our literature review covers match fixing detection, match outcome forecasting models, and anomaly detection methods, underscoring current limitations and proposing a new sports anomaly detection method. Our findings reveal anomalous series in the 2022 NBA playoffs, with the Phoenix Suns vs Dallas Mavericks series having the lowest natural occurrence probability. We identify abnormal player performances and bettors' profits significantly decrease when post-season matches are included. This study contributes by developing a new approach to detect anomalous matches and player performances, and assisting investigators in identifying responsible parties. While we cannot conclusively establish reasons behind unusual player performances, our findings suggest factors such as team financial difficulties, executive mismanagement, and individual player contract issues.Keywords: anomaly match detection, match fixing, match outcome forecasting, problematic players identification
Procedia PDF Downloads 794483 Digital Forgery Detection by Signal Noise Inconsistency
Authors: Bo Liu, Chi-Man Pun
Abstract:
A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.Keywords: forgery detection, splicing forgery, noise estimation, noise
Procedia PDF Downloads 4614482 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 2784481 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: pantograph models, phase plots, structural health monitoring, damage detection
Procedia PDF Downloads 3624480 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1534479 Current Approach in Biodosimetry: Electrochemical Detection of DNA Damage
Authors: Marcela Jelicova, Anna Lierova, Zuzana Sinkorova, Radovan Metelka
Abstract:
At present, electrochemical methods are used in various research fields, especially for analysis of biological molecules. The fact offers the possibility of using the detection of oxidative damage induced indirectly by γ rays in DNA in biodosimentry. The main goal of our study is to optimize the detection of 8-hydroxyguanine by differential pulse voltammetry. The level of this stable and specific indicator of DNA damage could be determined in DNA isolated from peripheral blood lymphocytes, plasma or urine of irradiated individuals. Screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes were utilized for highly sensitive electrochemical detection of 8-hydroxyguanine. Electrochemical oxidation of 8-hydroxoguanine monitored by differential pulse voltammetry was found pH-dependent and the most intensive signal was recorded at pH 7. After recalculating the current density, several times higher sensitivity was attained in comparison with already published results, which were obtained using screen-printed carbon electrodes with unmodified carbon ink. Subsequently, the modified electrochemical technique was used for the detection of 8-hydroxoguanine in calf thymus DNA samples irradiated by 60Co gamma source in the dose range from 0.5 to 20 Gy using by various types of sample pretreatment and measurement conditions. This method could serve for fast retrospective quantification of absorbed dose in cases of accidental exposure to ionizing radiation and may play an important role in biodosimetry.Keywords: biodosimetry, electrochemical detection, voltametry, 8-hydroxyguanine
Procedia PDF Downloads 2744478 Intrusion Detection In MANET Using Game Theory
Authors: S. B. Kumbalavati, J. D. Mallapur, K. Y. Bendigeri
Abstract:
A mobile Ad-hoc network (MANET) is a multihop wireless network where nodes communicate each other without any pre-deployed infrastructure. There is no central administrating unit. Hence, MANET is generally prone to many of the attacks. These attacks may alter, release or deny data. These attacks are nothing but intrusions. Intrusion is a set of actions that attempts to compromise integrity, confidentiality and availability of resources. A major issue in the design and operation of ad-hoc network is sharing the common spectrum or common channel bandwidth among all the nodes. We are performing intrusion detection using game theory approach. Game theory is a mathematical tool for analysing problems of competition and negotiation among the players in any field like marketing, e-commerce and networking. In this paper mathematical model is developed using game theory approach and intruders are detected and removed. Bandwidth utilization is estimated and comparison is made between bandwidth utilization with intrusion detection technique and without intrusion detection technique. Percentage of intruders and efficiency of the network is analysed.Keywords: ad-hoc network, IDS, game theory, sensor networks
Procedia PDF Downloads 3874477 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks
Authors: Andrea Hernandez Hurtado
Abstract:
Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks
Procedia PDF Downloads 774476 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries
Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro
Abstract:
Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.Keywords: gases, detection, Arduino, MQ-2, alarm
Procedia PDF Downloads 2064475 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 824474 The Approach of New Urbanism Model to Identify the Sustainability of 'Kampung Kota'
Authors: Nadhia Maharany Siara, Muammal, Ilham Nurhakim, Rofifah Yusadi, M. Adie Putra Tanggara, I. Nyoman Suluh Wijaya
Abstract:
Urbanization in urban areas has impact to the demand of land use for housing, and it began to occur development in the high-density area called Kampung Kota. Kampung Kota grows and develops without planning or organically. The existence of Kampung Kota, becoming identity of the city development in Indonesia, gives self-identity to the city planning in Indonesia, but the existence of Kampung Kota in the development of the city in Indonesia is often considered as a source of environment, health, and social problems. This cause negative perception about the sustainability of Kampung Kota. This research aims to identify morphology and sustainability level of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City. So far, there have not been many studies that define sustainability of Kampung Kota especially from the perspective of Kampung Kota morphology as a part of urban housing areas. This research took place in in Polehan Sub-District, Blimbing District, Malang City which is one of the oldest Kampung Kota in Malang City. Identification of the sustainability level in this research is done by defining the morphology of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City with a descriptive approach to the observation case (Kampung Kota Polehan Sub-District). After that, definition of sustainability level is defined by quantifying the spatial structure by using the criteria from the new urbanism model which consist of buildings and populations density, compactness, diversity and mix land uses and sustainable transportation. In this case, the use of new urbanism model approach is very appropriate. New Urbanism is a design-driven strategy that is based on traditional forms to minimize urban sprawl in the suburbs. The result obtained from this study is the hometown of the level of sustainability in Polehan Sub-District, Blimbing District, Malang City of 3.2 and can be considered to have a good sustainability.Keywords: Kampung Kota, new urbanism model, sustainability, urban morphology
Procedia PDF Downloads 2904473 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 404472 Effects of Strain-Induced Melt Activation Process on the Structure and Morphology Mg₂Si in Al-15%Mg₂Si Composite
Authors: Reza Eslami-Farsani, Mohammad Alipour
Abstract:
The effect of deformation on the semisolid microstructure and degree of globularity of Al–15%Mg₂Si composite produced by the strain induced melt activation (SIMA) process was studied. Deformation of 25% was used. After deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures (560, 580 and 595 °C) for varying time (5, 10, 20 and 40 min). The microstructural study was carried out on the alloy by the use of optical microscopy. It was observed that strain induced deformation and subsequently melt activation has caused the globular morphology of Mg₂Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 40 min respectively.Keywords: deformation, semisolid, SIMA, Mg₂Si phase, modification
Procedia PDF Downloads 2824471 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation
Authors: Deepanjali Gurav, Kun Qian
Abstract:
In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics
Procedia PDF Downloads 1384470 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules
Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye
Abstract:
Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.Keywords: dendritic, electroplating, gold, template
Procedia PDF Downloads 1864469 Detection of Resistive Faults in Medium Voltage Overhead Feeders
Authors: Mubarak Suliman, Mohamed Hassan
Abstract:
Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder
Procedia PDF Downloads 1154468 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 674467 Application of the Hit or Miss Transform to Detect Dams Monitored for Water Quality Using Remote Sensing in South Africa
Authors: Brighton Chamunorwa
Abstract:
The current remote sensing of water quality procedures does not provide a step representing physical visualisation of the monitored dam. The application of the remote sensing of water quality techniques may benefit from use of mathematical morphology operators for shape identification. Given an input of dam outline, morphological operators such as the hit or miss transform identifies if the water body is present on input remotely sensed images. This study seeks to determine the accuracy of the hit or miss transform to identify dams monitored by the water resources authorities in South Africa on satellite images. To achieve this objective the study download a Landsat image acquired in winter and tested the capability of the hit or miss transform using shapefile boundaries of dams in the crocodile marico catchment. The results of the experiment show that it is possible to detect most dams on the Landsat image after the adjusting the erosion operator to detect pixel matching a percentage similarity of 80% and above. Successfully implementation of the current study contributes towards optimisation of mathematical morphology image operators. Additionally, the effort helps develop remote sensing of water quality monitoring with improved simulation of the conventional procedures.Keywords: hit or miss transform, mathematical morphology, remote sensing, water quality monitoring
Procedia PDF Downloads 1534466 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution
Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom
Abstract:
Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)
Procedia PDF Downloads 864465 3D Carbon Structures (Globugraphite) with Hierarchical Pore Morphology for the Application in Energy Storage Systems
Authors: Hubert Beisch, Janik Marx, Svenja Garlof, Roman Shvets, Ivan Grygorchak, Andriy Kityk, Bodo Fiedler
Abstract:
Three-dimensional carbon materials can be used as electrode materials for energy storage systems such as batteries and supercapacitors. Fast charging and discharging times are realizable without reducing the performance due to aging processes. Furthermore high specific surface area (SSA) of three-dimensional carbon structures leads to high specific capacities. One newly developed carbon foam is Globugraphite. This interconnected globular carbon morphology with statistically distributed hierarchical pores is manufactured by a chemical vapor deposition (CVD) process from ceramic templates resulting from a sintering process. Via scanning electron (SEM) and transmission electron microscopy (TEM), the morphology is characterized. Moreover, the SSA was measured by the Brunauer–Emmett–Teller (BET) theory. Measurements of Globugraphite in an organic and inorganic electrolyte show high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. A comparison of the specific values is summarized in a Ragone diagram. Energy densities up to 48 Wh/kg and power densities to 833 W/kg could be achieved for an SSA from 376 m²/g to 859 m²/g. For organic electrolyte, a specific capacity of 100 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, carbon foam, CVD process, electrochemical cell, Ragone diagram, SEM, TEM
Procedia PDF Downloads 2344464 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature
Authors: M. Malekian, M. E. Heydari, M. Irani Estyar
Abstract:
Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction
Procedia PDF Downloads 1314463 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1544462 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 4564461 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid
Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus
Abstract:
Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid
Procedia PDF Downloads 2464460 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 1064459 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation
Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov
Abstract:
Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing
Procedia PDF Downloads 2454458 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2244457 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 313