Search results for: molecular detection
5000 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 724999 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 1664998 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation
Authors: A. Rajabpour, A. Hadizadeh Kheirkhah
Abstract:
Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium
Procedia PDF Downloads 3064997 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori
Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh
Abstract:
An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)
Procedia PDF Downloads 2634996 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 44995 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4924994 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 3764993 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 2364992 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 1334991 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2154990 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe
Authors: Gerardo Arias, Richard Wall, Jamie Stevens
Abstract:
Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism
Procedia PDF Downloads 2404989 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4174988 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 1994987 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1214986 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.Keywords: molecular dynamics, high-intensity, nanosecond, electroporation
Procedia PDF Downloads 1104985 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker
Authors: Emma K. Sales, Nilda G. Butardo
Abstract:
The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D
Procedia PDF Downloads 2984984 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 3854983 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1514982 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 404981 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 4984980 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives
Authors: Z. Bayat
Abstract:
A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.Keywords: DFT, adamantane, QSAR, Kovat
Procedia PDF Downloads 3644979 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3194978 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3644977 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets
Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi
Abstract:
TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter
Procedia PDF Downloads 5204976 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 3364975 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 764974 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 3394973 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2574972 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs
Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny
Abstract:
As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning
Procedia PDF Downloads 2084971 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 159