Search results for: macroscopic quantum fields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2868

Search results for: macroscopic quantum fields

2508 Magnetic versus Non-Magnetic Adatoms in Graphene Nanoribbons: Tuning of Spintronic Applications and the Quantum Spin Hall Phase

Authors: Saurabh Basu, Sudin Ganguly

Abstract:

Conductance in graphene nanoribbons (GNR) in presence of magnetic (for example, Iron) and non-magnetic (for example, Gold) adatoms are explored theoretically within a Kane-Mele model for their possible spintronic applications and topologically non-trivial properties. In our work, we have considered the magnetic adatoms to induce a Rashba spin-orbit coupling (RSOC) and an exchange bias field, while the non-magnetic ones induce an RSOC and an intrinsic spin-orbit (SO) coupling. Even though RSOC is present in both, they, however, represent very different physical situations, where the magnetic adatoms do not preserve the time reversal symmetry, while the non-magnetic case does. This has important implications on the topological properties. For example, the non-magnetic adatoms, for moderately strong values of SO, the GNR denotes a quantum spin Hall insulator as evident from a 2e²/h plateau in the longitudinal conductance and presence of distinct conducting edge states with an insulating bulk. Since the edge states are protected by time reversal symmetry, the magnetic adatoms in GNR yield trivial insulators and do not possess any non-trivial topological property. However, they have greater utility than the non-magnetic adatoms from the point of view of spintronic applications. Owing to the broken spatial symmetry induced by the presence of adatoms of either type, all the x, y and z components of the spin-polarized conductance become non-zero (only the y-component survives in pristine Graphene owing to a mirror symmetry present there) and hence become suitable for spintronic applications. However, the values of the spin polarized conductances are at least two orders of magnitude larger in the case of magnetic adatoms than their non-magnetic counterpart, thereby ensuring more efficient spintronic applications. Further the applications are tunable by altering the adatom densities.

Keywords: magnetic and non-magnetic adatoms, quantum spin hall phase, spintronic applications, spin polarized conductance, time reversal symmetry

Procedia PDF Downloads 291
2507 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes

Authors: Salim Belouettar, Kodjo Attipou

Abstract:

The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.

Keywords: wrinkling, thermal stresses, Fourier series, thin membranes

Procedia PDF Downloads 378
2506 Quantum Cum Synaptic-Neuronal Paradigm and Schema for Human Speech Output and Autism

Authors: Gobinathan Devathasan, Kezia Devathasan

Abstract:

Objective: To improve the current modified Broca-Wernicke-Lichtheim-Kussmaul speech schema and provide insight into autism. Methods: We reviewed the pertinent literature. Current findings, involving Brodmann areas 22, 46, 9,44,45,6,4 are based on neuropathology and functional MRI studies. However, in primary autism, there is no lucid explanation and changes described, whether neuropathology or functional MRI, appear consequential. Findings: We forward an enhanced model which may explain the enigma related to autism. Vowel output is subcortical and does need cortical representation whereas consonant speech is cortical in origin. Left lateralization is needed to commence the circuitry spin as our life have evolved with L-amino acids and left spin of electrons. A fundamental species difference is we are capable of three syllable-consonants and bi-syllable expression whereas cetaceans and songbirds are confined to single or dual consonants. The 4 key sites for speech are superior auditory cortex, Broca’s two areas, and the supplementary motor cortex. Using the Argand’s diagram and Reimann’s projection, we theorize that the Euclidean three dimensional synaptic neuronal circuits of speech are quantized to coherent waves, and then decoherence takes place at area 6 (spherical representation). In this quantum state complex, 3-consonant languages are instantaneously integrated and multiple languages can be learned, verbalized and differentiated. Conclusion: We postulate that evolutionary human speech is elevated to quantum interaction unlike cetaceans and birds to achieve the three consonants/bi-syllable speech. In classical primary autism, the sudden speech switches off and on noted in several cases could now be explained not by any anatomical lesion but failure of coherence. Area 6 projects directly into prefrontal saccadic area (8); and this further explains the second primary feature in autism: lack of eye contact. The third feature which is repetitive finger gestures, located adjacent to the speech/motor areas, are actual attempts to communicate with the autistic child akin to sign language for the deaf.

Keywords: quantum neuronal paradigm, cetaceans and human speech, autism and rapid magnetic stimulation, coherence and decoherence of speech

Procedia PDF Downloads 180
2505 Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix

Authors: Zhang Zijian

Abstract:

Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function.

Keywords: hopping mechanism, Archimedes' Helix, hopping robot, spherical robot

Procedia PDF Downloads 126
2504 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.

Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function

Procedia PDF Downloads 165
2503 The Influence of the Laws of Ergonomics on the Design of High-Rise Buildings

Authors: Valery A. Aurov, Maria D. Bausheva, Elena V. Uliyanova

Abstract:

The problems of sustainability of contemporary high-rise buildings now demand an altogether new approach, which corresponds with the laws of dialectics. We should imply the principle “going from mega-object to the so called mezzo-object.” So the scientists have arrived at the conclusion that a contemporary “skyscraper” must not increase in height but develop horizontal space axes which unite a complex of high-rise buildings into a single composition. This is necessary both for safety issues and increasing skyscrapers’ functioning qualities. As a result, architects single out a quality unit in a dominating group of high-rise constructions and make a conclusion about the influence of visual fields on the designing parameters of this group.

Keywords: design, high-rise buildings, skyscrapers, sustainability, visual fields, dominating group, regulations, design recommendations

Procedia PDF Downloads 364
2502 Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process: A Green Approach for Mass Production

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: average life time, CdSe QDs, microwave (MW), mass production oleic acid, Na2SeSO3

Procedia PDF Downloads 306
2501 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 414
2500 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops

Authors: Brandtner Patrick, Staberhofer Franz

Abstract:

Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.

Keywords: digital supply chain, digital transformation, supply chain management, value networks

Procedia PDF Downloads 156
2499 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 488
2498 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series

Authors: Wiem Gadri

Abstract:

This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral charac-teristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this new setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a novel characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.

Keywords: Pisot numbers, Salem numbers, formal power series, over a finite field

Procedia PDF Downloads 41
2497 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 101
2496 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields

Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen

Abstract:

The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.

Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering

Procedia PDF Downloads 423
2495 Three Macrofungi Taxa Records of Basidiomycota from Turkey

Authors: Ahmet Afyon, Dursun Yagiz, Kutret Gezer, Aziz Turkoglu

Abstract:

This study was conducted in order to contribute to Turkey’s macrofungus flora. The fungi samples forming the study material were collected from Afyonkarahisar province in 2009. The photos of mushrooms were taken in their own habitats. Their tastes, odors and clours were determined. These samples were brought to the laboratory. The microscopic properties of fungi were determined in the laboratory. The fungi were identified according to their macroscopic and microscopic features with the help of written literature. The identified macrofungi are; Limacella furnace (Letell.) E.-J. Gilbert from the Amanitaceae familia, Marasmiellus vaiillantii (Pers.) Singer from Omphalotaceae familia, Mycena flos-nivium Kuhner from Mycenaceae familia. With this study, it has been contributed to Turkey’s macrofungi flora and biodiversity.

Keywords: Afyonkarahisar, macrofungi, records, Turkey

Procedia PDF Downloads 324
2494 Historical Landscape Affects Present Tree Density in Paddy Field

Authors: Ha T. Pham, Shuichi Miyagawa

Abstract:

Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field are now rely on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape.

Keywords: aerial photographs, land use change, traditional landscape, tree in paddy fields

Procedia PDF Downloads 411
2493 The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus

Authors: Afiqah Shafify Amran, Siti Aisyah Shamsudin, Nurul Yuziana Mohd Yusof

Abstract:

Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS.

Keywords: cadmium sulphide, cowpea chlorotic mottle virus, protein cage nanoparticles, quantum dots

Procedia PDF Downloads 331
2492 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 357
2491 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal

Authors: Linta Rose, Prasad K. Bhaskaran

Abstract:

Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.

Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind

Procedia PDF Downloads 212
2490 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model

Authors: Justin Zhengjie Tan, Yang Zhao

Abstract:

Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.

Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment

Procedia PDF Downloads 72
2489 Rapid Microwave-Enhanced Process for Synthesis of CdSe Quantum Dots for Large Scale Production and Manipulation of Optical Properties

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: CdSe QDs, Na2SeSO3, microwave (MW), oleic acid, mass production, average life time

Procedia PDF Downloads 699
2488 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples

Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson

Abstract:

Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.

Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors

Procedia PDF Downloads 228
2487 The Role of Nurses and Midwives’ Self-Government in Postgraduate Education in Poland

Authors: Tomasz Holecki, Hanna Dobrowolska

Abstract:

In the Polish health care system, nurses and midwives are obliged to regularly update their professional knowledge. It is all regulated by the Law on the nurse and midwife’s profession and the code of ethics. The professional self-governing body (County Chamber of Nurses and Midwives) is obliged to organize ongoing training for them so that maintaining accessibility and availability to the high quality of educational services could be possible at all levels of post-graduate education. The aim of this study is an analysis of post-graduate education organized by the County Chamber of Nurses and Midwives in the city of Katowice, Poland, as a professional self-governing body operating in the area of Silesian province inhabited by almost 5 million citizens which bring together more than 30 thousand professionally active nurses and midwives. In the years 2000-2017, the self-government of nurses and midwives trained over 50,000 people. The education and supervision system over the labour of nurses and midwives establishes exercising control by a self-governing body. In practice, this means that conducting activities aimed at creating legal regulations and organizational conditions, as well as the practical implementation of courses, belongs to the professional self-government of nurses and midwives. The most of specialization courses that were provided from their own funds came from membership fees. The biggest group was participants of specializations in the fields of cardiac, anesthesia, and preventive nursing. The smallest group of people participated in such specializations as neonatal, emergency, and obstetrics nursing. The most popular specialist courses were in the fields of the electrocardiogram and cardiopulmonary resuscitation, whereas the least popular were the ones in the fields of protective vaccinations of neonates. So-called 'soft training-courses' in the fields of improvement of social skills and management were also provided. The research shows that a vast majority of nurses and midwives are interested in raising their professional qualifications. Specialist courses and selected fields of qualification courses received the most concrete attention. In light of conducted research, one can assert that cooperation inside the community of nurses and midwives provides access to high-quality education and training services regularly used by a wide circle of them. The presented results exemplify a level of real interest in specialist and qualification training-courses and also show sources of financing them.

Keywords: nurses and midwives, ongoing training, postgraduate education, specialist training-courses

Procedia PDF Downloads 99
2486 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 101
2485 The Motion of Ultrasonically Propelled Nanomotors Operating in Biomimetic Environments

Authors: Suzanne Ahmed

Abstract:

Nanomotors, also commonly referred to as nanorobotics or nanomachines, have garnered considerable research attention due to their numerous potential applications in biomedicine, including drug delivery and microsurgery. Nanomotors typically consist of inorganic or polymeric particles that are powered to undergo motion. These artificial, man-made nanoscale motors operate in the low Reynolds number regime and typically have no moving parts. Several methods have been developed to actuate the motion of nanomotors including magnetic fields, electrical fields, electromagnetic waves, and chemical fuel. Since their introduction in 2012, ultrasonically powered nanomotors have been explored in biocompatible fluids and even within living cells. Due to the common use of ultrasound within the biomedical community for both imaging and therapeutics, the introduction of ultrasonically propelled nanomotors holds significant potential for biomedical applications. In this work, metallic nanomotors are electrochemically plated within porous anodic alumina templates to have a diameter of 300 nm and a length that is 2-4 µm. Nanomotors are placed within an acoustic chamber capable of producing bulk acoustic waves in the ultrasonic range. The motion of nanomotors within biomimetic confines is explored. The control over nanomotor motion is exerted by virtue of the properties of the acoustic signal within these biomimetic confines to control speed, modes of motion and directionality of motion. To expand the range of control over nanorod motion within biomimetic confines, external forces from biocompatible magnetic fields, are exerted onto the acoustically propelled nanomotors.

Keywords: nanomotors, nanomachines, nanorobots, ultrasound

Procedia PDF Downloads 66
2484 Information Technology Impacts on the Supply Chain Performance: Case Study Approach

Authors: Kajal Zarei

Abstract:

Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.

Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification

Procedia PDF Downloads 273
2483 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).

Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation

Procedia PDF Downloads 452
2482 Predicting the Uniaxial Strength Distribution of Brittle Materials Based on a Uniaxial Test

Authors: Benjamin Sonnenreich

Abstract:

Brittle fracture failure probability is best described using a stochastic approach which is based on the 'weakest link concept' and the connection between a microstructure and macroscopic fracture scale. A general theoretical and experimental framework is presented to predict the uniaxial strength distribution according to independent uniaxial test data. The framework takes as input the applied stresses, the geometry, the materials, the defect distributions and the relevant random variables from uniaxial test results and gives as output an overall failure probability that can be used to improve the reliability of practical designs. Additionally, the method facilitates comparisons of strength data from several sources, uniaxial tests, and sample geometries.

Keywords: brittle fracture, strength distribution, uniaxial, weakest link concept

Procedia PDF Downloads 315
2481 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct

Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez

Abstract:

Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.

Keywords: PIV, annular duct, laminar, turbulence, velocity profile

Procedia PDF Downloads 336
2480 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 661
2479 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 82