Search results for: identification partial rbcL
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4143

Search results for: identification partial rbcL

3783 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis

Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza

Abstract:

Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.

Keywords: permanent magnet, diagnosis, demagnetization, modelling

Procedia PDF Downloads 68
3782 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 354
3781 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8

Authors: Aysun Sezer

Abstract:

Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.

Keywords: YOLOv8, object detection, humerus, scapula, IRM

Procedia PDF Downloads 66
3780 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

In Commonly, it is primary problem that there is multiple user interference (MUI) noise resulting from the overlapping among the users in optical code-division multiple access (OCDMA) system. In this article, we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say, it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: optical code-division multiple access (OCDMA), successive interference cancellation (SIC), multiple user interference (MUI), spectral amplitude coding (SAC), partial modified prime code (PMP)

Procedia PDF Downloads 521
3779 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion

Authors: Doyoung Kim, Hyo Seon Park

Abstract:

Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.

Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification

Procedia PDF Downloads 410
3778 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 463
3777 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 186
3776 Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load

Authors: Idowu Ibikunle Albert, Atilade Adesanya Oluwafemi, Okedeyi Abiodun Sikiru, Mustapha Rilwan Adewale

Abstract:

These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force.

Keywords: elastic beam, moving load, response of structure, variable elastic foundation

Procedia PDF Downloads 121
3775 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 129
3774 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management

Procedia PDF Downloads 232
3773 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
3772 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
3771 Waste Identification Diagrams Effectiveness: A Case Study in the Manaus Industrial Pole

Authors: José Dinis-Carvalho, Levi Guimarães, Celina Leão, Rui Sousa, Rosa Eliza Vieira, Larissa Thomaz, Kelliane Guerreiro

Abstract:

This research paper investigates the efficacy of waste identification diagrams (WIDs) as a tool for waste reduction and management within the Manaus Industrial Pole. The study focuses on assessing the practical application and effectiveness of WIDs in identifying, categorizing, and mitigating various forms of waste generated across industrial processes. Employing a mixed-methods approach, including a qualitative questionnaire applied to 5 companies and quantitative data analysis with SPSS statistical software, the research evaluates the implementation and impact of WIDs on waste reduction practices in select industries within the Manaus Industrial Pole. The findings contribute to understanding the utility of WIDs as a proactive strategy for waste management, offering insights into their potential for fostering sustainable practices and promoting environmental stewardship in industrial settings. The study also discusses challenges, best practices, and recommendations for optimizing the utilization of WIDs in industrial waste management, thereby addressing the broader implications for sustainable industrial development.

Keywords: waste identification diagram, value stream mapping, overall equipment effectiveness, lean manufacturing

Procedia PDF Downloads 54
3770 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: identification, Hammerstein-Wiener, optimization, quantization

Procedia PDF Downloads 257
3769 Isolement and Identification of Major Constituents from Essential Oil of Launaea nudicaulis

Authors: M. Yakoubi, N. Belboukhari, A. Cheriti, K. Sekoum

Abstract:

Launaea nudicaulis (L.) Hook.f. is a desert, spontaneous plant and endemic to northem Sahara, which belongs to the Asteraceae family. This species exists in the region of Bechar (Local name; El-Rghamma). In our knowledge, no work has been founded, except studies showing the antimicrobial and antifungal activity of methalonic extract of this plant. The present paper describes the chemical composition of the essential oil from Launaea nudicaulis and qualification of isolation and identification of some pure products by column chromatography. The essential oil from the aerial parts of Launaea nudicaulis (Asteraceae) was obtained by hydroditillation in 0.4% yield, led to isolation of four several new products. The isolation is made by column chromatography and followed by GC-IK and GC-MS analysis.

Keywords: Launaea nudicaulis, asteraceae, essential oil, column chromatography, GC-FID, GC-MS

Procedia PDF Downloads 301
3768 Identification and Selection of a Supply Chain Target Process for Re-Design

Authors: Jaime A. Palma-Mendoza

Abstract:

A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.

Keywords: decision support systems, multiple criteria analysis, supply chain management

Procedia PDF Downloads 492
3767 Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map

Authors: Hongmin Deng, Qionghua Wang

Abstract:

A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M0 development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST).

Keywords: chaos encryption, logistic map, pseudo-random sequence, RFID

Procedia PDF Downloads 401
3766 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 172
3765 Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population

Authors: H. Imad, Y. Cheah, O. Aamera

Abstract:

The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants.

Keywords: encompassing nucleotide positions 37 to 340, HVII, Iraq, mitochondrial DNA, polymorphism, frequency

Procedia PDF Downloads 761
3764 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 285
3763 Behavior of Castellated Beam Column Due to Cyclic Loads

Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin

Abstract:

The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.

Keywords: steel, castella, column beams, cyclic load

Procedia PDF Downloads 459
3762 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 121
3761 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
3760 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 550
3759 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 244
3758 Thai Student Teachers' Prior Understanding of Nature of Science (NOS)

Authors: N. Songumpai, W. Sumranwanich, S. Chatmaneerungcharoen

Abstract:

This research aims to study the understanding of 8 aspects of nature of science (NOS). The research participants were 39 General Science student teachers who were selected by purposive sampling. In 2015 academic year, they enrolled in the course of Science Education Learning Management. Qualitative research was used as research methodology to understand how the student teachers propose on NOS. The research instruments consisted of open-ended questionnaires and semi-structure interviews that were used to assess students’ understanding of NOS. Research data was collected by 8 items- questionnaire and was categorized into students’ understanding of NOS, which consisted of complete understanding (CU), partial understanding (PU), misunderstanding (MU) and no understanding (NU). The findings reveal the majority of students’ misunderstanding of NOS regarding the aspects of theory and law(89.7%), scientific method(61.5%) and empirical evidence(15.4%) respectively. From the interview data, the student teachers present their misconceptions of NOS that indicate about theory and law cannot change; science knowledge is gained through experiment only (step by step); science is the things that are around humans. These results suggest that for effective science teacher education, the composition of design of NOS course needs to be considered. Therefore, teachers’ understanding of NOS is necessary to integrate into professional development program/course for empowering student teachers to begin their careers as strong science teachers in schools.

Keywords: nature of science, student teacher, no understanding, misunderstanding, partial understanding, complete understanding

Procedia PDF Downloads 261
3757 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 383
3756 Application of Directed Acyclic Graphs for Threat Identification Based on Ontologies

Authors: Arun Prabhakar

Abstract:

Threat modeling is an important activity carried out in the initial stages of the development lifecycle that helps in building proactive security measures in the product. Though there are many techniques and tools available today, one of the common challenges with the traditional methods is the lack of a systematic approach in identifying security threats. The proposed solution describes an organized model by defining ontologies that help in building patterns to enumerate threats. The concepts of graph theory are applied to build the pattern for discovering threats for any given scenario. This graph-based solution also brings in other benefits, making it a customizable and scalable model.

Keywords: directed acyclic graph, ontology, patterns, threat identification, threat modeling

Procedia PDF Downloads 139
3755 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil

Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract:

Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.

Keywords: heavy metals, spectroscopy, spectral bands, PLS regression

Procedia PDF Downloads 84
3754 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 93