Search results for: governing differential equation
3414 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling
Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot
Procedia PDF Downloads 6073413 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance
Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan
Abstract:
When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel
Procedia PDF Downloads 713412 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium
Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir
Abstract:
This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model
Procedia PDF Downloads 3393411 Development of 3D Particle Method for Calculating Large Deformation of Soils
Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee
Abstract:
In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.Keywords: particle method, large deformation, soil column, confined compressive stress
Procedia PDF Downloads 5773410 Out-of-Plane Free Vibrations of Circular Rods
Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker
Abstract:
In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method
Procedia PDF Downloads 3123409 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection
Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber
Abstract:
The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid
Procedia PDF Downloads 3843408 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis
Authors: Elisha Kyirem
Abstract:
Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.Keywords: migration, adaptation, climate change, adaptation, poverty reduction
Procedia PDF Downloads 3993407 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions
Authors: Yacine Arioua
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness
Procedia PDF Downloads 2673406 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus
Authors: Luis Miguel Méndez Díaz
Abstract:
In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences
Procedia PDF Downloads 863405 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation
Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan
Abstract:
We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics
Procedia PDF Downloads 3363404 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity
Procedia PDF Downloads 1993403 Modeling of Nitrogen Solubility in Stainless Steel
Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky
Abstract:
Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.Keywords: solubility, nitrogen, stainless steel, Schaeffler
Procedia PDF Downloads 2423402 Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment
Authors: Ana B. Vivas, Antonia Ypsilanti, Aristea I. Ladas, Angeles F. Estevez
Abstract:
Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia.Keywords: mild cognitive impairment, working memory, differential outcomes, cognitive process
Procedia PDF Downloads 4653401 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique
Authors: Abhilash Sahu, Amit Priyadarshi
Abstract:
In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution
Procedia PDF Downloads 2363400 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams
Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman
Abstract:
Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture
Procedia PDF Downloads 5583399 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach
Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena
Abstract:
In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation
Procedia PDF Downloads 703398 Multiple-Lump-Type Solutions of the 2D Toda Equation
Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique
Abstract:
In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution
Procedia PDF Downloads 2253397 Differential Approach to Technology Aided English Language Teaching: A Case Study in a Multilingual Setting
Authors: Sweta Sinha
Abstract:
Rapid evolution of technology has changed language pedagogy as well as perspectives on language use, leading to strategic changes in discourse studies. We are now firmly embedded in a time when digital technologies have become an integral part of our daily lives. This has led to generalized approaches to English Language Teaching (ELT) which has raised two-pronged concerns in linguistically diverse settings: a) the diverse linguistic background of the learner might interfere/ intervene with the learning process and b) the differential level of already acquired knowledge of target language might make the classroom practices too easy or too difficult for the target group of learners. ELT needs a more systematic and differential pedagogical approach for greater efficiency and accuracy. The present research analyses the need of identifying learner groups based on different levels of target language proficiency based on a longitudinal study done on 150 undergraduate students. The learners were divided into five groups based on their performance on a twenty point scale in Listening Speaking Reading and Writing (LSRW). The groups were then subjected to varying durations of technology aided language learning sessions and their performance was recorded again on the same scale. Identifying groups and introducing differential teaching and learning strategies led to better results compared to generalized teaching strategies. Language teaching includes different aspects: the organizational, the technological, the sociological, the psychological, the pedagogical and the linguistic. And a facilitator must account for all these aspects in a carefully devised differential approach meeting the challenge of learner diversity. Apart from the justification of the formation of differential groups the paper attempts to devise framework to account for all these aspects in order to make ELT in multilingual setting much more effective.Keywords: differential groups, English language teaching, language pedagogy, multilingualism, technology aided language learning
Procedia PDF Downloads 3943396 Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study
Authors: A. Bentabet, A. Aydin, N. Fenineche
Abstract:
In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model.Keywords: differential cross-section, backscattering coefficient, Rutherford cross-section, Vicanek and Urbassek theory
Procedia PDF Downloads 5653395 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing
Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi
Abstract:
According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models
Procedia PDF Downloads 4543394 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects
Authors: Okuyade Ighoroje Wilson Ata
Abstract:
Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel
Procedia PDF Downloads 823393 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry
Authors: A. Ja, J. Belabid, A. Cheddadi
Abstract:
This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.Keywords: natural convection, double-diffusion, porous medium, annular geometry, finite differences
Procedia PDF Downloads 3453392 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature
Authors: Ishak Hashim, Ammar Alsabery
Abstract:
The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature
Procedia PDF Downloads 3643391 Differential Antibrucella Activity of Bovine and Murine Macrophages
Authors: Raheela Akhtar, Zafar Iqbal Chaudhary, Yongqun Oliver He, Muhammad Younus, Aftab Ahmad Anjum
Abstract:
Brucella abortus is an intracellular pathogen affecting macrophages. Macrophages release some components such as lysozymes (LZ), reactive oxygen species (ROS) and reactive nitrite intermediates (RNI) which are important tools against intracellular survival of Brucella. The antibrucella activity of bovine and murine macrophages was compared following stimulation with Brucella abortus lipopolysaccharides. Our results revealed that murine macrophages were ten times more potent to produce antibrucella components than bovine macrophages. The differential production of these components explained the differential Brucella killing ability of these species that was measured in terms of intramacrophagic survival of Brucella in murine and bovine macrophages.Keywords: bovine macrophages, Brucella abortus, cell stimulation, cytokines, Murine macrophages
Procedia PDF Downloads 5643390 Inflation and Unemployment Rates as Indicators of the Transition European Union Countries Monetary Policy Orientation
Authors: Elza Jurun, Damir Piplica, Tea Poklepović
Abstract:
Numerous studies carried out in the developed western democratic countries have shown that the ideological framework of the governing party has a significant influence on the monetary policy. The executive authority consisting of a left-wing party gives a higher weight to unemployment suppression and central bank implements a more expansionary monetary policy. On the other hand, right-wing governing party considers the monetary stability to be more important than unemployment suppression and in such a political framework the main macroeconomic objective becomes the inflation rate reduction. The political framework conditions in the transition countries which are new European Union (EU) members are still highly specific in relation to the other EU member countries. In the focus of this paper is the question whether the same monetary policy principles are valid in these transitional countries as well as they apply in developed western democratic EU member countries. The data base consists of inflation rate and unemployment rate for 11 transitional EU member countries covering the period from 2001 to 2012. The essential information for each of these 11 countries and for each year of the observed period is right or left political orientation of the ruling party. In this paper we use t-statistics to test our hypothesis that there are differences in inflation and unemployment between right and left political orientation of the governing party. To explore the influence of different countries, through years and different political orientations descriptive statistics is used. Inflation and unemployment should be strongly negatively correlated through time, which is tested using Pearson correlation coefficient. Regarding the fact whether the governing authority is consisted from left or right politically oriented parties, monetary authorities will adjust its policy setting the higher priority on lower inflation or unemployment reduction.Keywords: inflation rate, monetary policy orientation, transition EU countries, unemployment rate
Procedia PDF Downloads 4473389 The Observable Method for the Regularization of Shock-Interface Interactions
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.
Procedia PDF Downloads 3523388 Fully Coupled Porous Media Model
Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li
Abstract:
This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.Keywords: coupled, implicit, monolithic, porous media
Procedia PDF Downloads 1413387 A Cross-Cultural Investigation of Self-Compassion in Adolescents Across Gender
Authors: H. N. Cheung
Abstract:
Self-compassion encourages one to accept oneself, reduce self-criticism and self-judgment, and see one’s shortcomings and setbacks in a balanced view. Adolescent self-compassion is a crucial protective factor against mental illness. It is, however, affected by gender. Given the scarcity of self-compassion scales for adolescents, the current study evaluates the Self-Compassion Scale for Youth (SCS-Y) in a large cross-cultural sample and investigates how the subscales of SCS-Y relate to the dimensions of depressive symptoms across gender. Through the internet-based Qualtrics, a total of 2881 teenagers aged 12 to 18 years were recruited from Hong Kong (HK), China, and the United Kingdom. A Multiple Indicator Multiple Cause (MIMIC) model was used to evaluate measurement invariance of the SCS-Y, and differential item functioning (DIF) was checked across gender. Upon the establishment of the best model, a multigroup structural equation model (SEM) was built between factors of SCS-Y and Multidimensional depression assessment scale (MDAS) which assesses four dimensions of depressive symptoms (emotional, cognitive, somatic and interpersonal). The SCS-Y was shown to have good reliability and validity. The MIMIC model produced a good model fit for a hypothetical six-factor model (CFI = 0.980; TLI = 0.974; RMSEA = 0.038) and no item was flagged for DIF across gender. A gender difference was observed between SCS-Y factors and depression dimensions. Conclusions: The SCS-Y exhibits good psychometric characteristics, including measurement invariance across gender. The study also highlights the gender difference between self-compassion factors and depression dimensions.Keywords: self compassion, gender, depression, structural equation modelling, MIMIC model
Procedia PDF Downloads 763386 Exact Solutions of Discrete Sine-Gordon Equation
Authors: Chao-Qing Dai
Abstract:
Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors
Procedia PDF Downloads 4223385 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation
Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov
Abstract:
We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution
Procedia PDF Downloads 436