Search results for: generalized differential quadrature
2034 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems
Procedia PDF Downloads 3642033 A Class of Third Derivative Four-Step Exponential Fitting Numerical Integrator for Stiff Differential Equations
Authors: Cletus Abhulimen, L. A. Ukpebor
Abstract:
In this paper, we construct a class of four-step third derivative exponential fitting integrator of order six for the numerical integration of stiff initial-value problems of the type: y’= f(x,y); y(x₀) =y₀. The implicit method has free parameters which allow it to be fitted automatically to exponential functions. For the purpose of effective implementation of the proposed method, we adopted the techniques of splitting the method into predictor and corrector schemes. The numerical analysis of the stability of the new method was discussed; the results show that the method is A-stable. Finally, numerical examples are presented, to show the efficiency and accuracy of the new method.Keywords: third derivative four-step, exponentially fitted, a-stable, stiff differential equations
Procedia PDF Downloads 2652032 Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves
Authors: Kamal, J. P. Narayan
Abstract:
In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained.Keywords: 3D viscoelastic simulation, basin-generated surface waves, basin-shape-ratio effects, average spectral amplification, aggravation factors and differential ground motion
Procedia PDF Downloads 5082031 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module
Procedia PDF Downloads 3522030 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription
Authors: Michael Fundator
Abstract:
Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription
Procedia PDF Downloads 4062029 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance
Authors: Byung Cheol Kim
Abstract:
The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.Keywords: PERT, subjective distribution, project management, flexible variance
Procedia PDF Downloads 182028 Spatial Evaluations of Haskoy: The Emperial Village
Authors: Yasemin Filiz-Kuruel, Emine Koseoglu
Abstract:
This study aims to evaluate Haskoy district of Beyoglu town of Istanbul. Haskoy is located in Halic region, between Kasimpasa district and Kagithane district. After the conquest of Istanbul, Fatih Sultan Mehmet (the Conqueror) set up his tent here. Therefore, the area gets its name as Haskoy, 'imperial village' that means a village which is special for Sultan. Today, there are shipyard and ateliers in variable sizes in Haskoy. In this study, the legibility of Haskoy streets is investigated comparatively. As a research method, semantic differential scale is used. The photos of the streets, which contain specific criteria, are chosen. The questionnaire is directed to first and third grade architecture students. The spatial evaluation of Haskoy streets is done through the survey.Keywords: Haskoy, legibility, semantic differential scale, urban streets
Procedia PDF Downloads 5662027 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution
Authors: Mohammed Ali Hjaji, Magdi Mohareb
Abstract:
This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution
Procedia PDF Downloads 4702026 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2922025 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 3412024 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs
Authors: K. N. Dinesh Babu, P. K. Gargava
Abstract:
Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.Keywords: differential protection, intelligent electronic device (IED), 2nd harmonic inhibit, inrush inhibit
Procedia PDF Downloads 3002023 Development of Fem Code for 2-D Elasticity Problems Using Quadrilateral and Triangular Elements
Authors: Muhammad Umar Kiani, Waseem Sakawat
Abstract:
This study presents the development of FEM code using Quadrilateral 4-Node (Q4) and Triangular 3-Node (T3) elements. Code is formulated using MATLAB language. Instead of using both elements in the same code, two separate codes are written. Quadrilateral element is difficult to handle directly, that is why natural coordinates (eta, ksi) are used. Due to this, Q4 code includes numerical integration (Gauss quadrature). In this case, complete numerical integration is performed using 2 points. On the other hand, T3 element can be modeled directly, by using direct stiffness approach. Axially loaded element, cantilever (special constraints) and Patch test cases were analyzed using both codes and the results were verified by using Ansys.Keywords: FEM code, MATLAB, numerical integration, ANSYS
Procedia PDF Downloads 4192022 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis
Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin
Abstract:
Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis
Procedia PDF Downloads 2692021 Phylogenetic Differential Separation of Environmental Samples
Authors: Amber C. W. Vandepoele, Michael A. Marciano
Abstract:
Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.Keywords: DNA isolation, geolocation, non-human, phylogenetic separation
Procedia PDF Downloads 1122020 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1262019 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, mixed convection, stability analysis
Procedia PDF Downloads 3902018 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method
Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh
Abstract:
When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity
Procedia PDF Downloads 4962017 Search for APN Permutations in Rings ℤ_2×ℤ_2^k
Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens
Abstract:
Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design
Procedia PDF Downloads 1592016 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation
Procedia PDF Downloads 3362015 The Role of Surgery to Remove the Primary Tumor in Patients with Metastatic Breast Cancer
Authors: A. D. Zikiryahodjaev, L. V. Bolotina, A. S. Sukhotko
Abstract:
Purpose. To evaluate the expediency and timeliness of performance of surgical treatment as a component of multi-therapy treatment of patients with stage IV breast cancers. Materials and Methods. This investigation comparatively analyzed the results of complex treatment with or without surgery in patients with metastatic breast cancer. We analyzed retrospectively treatment experience of 196 patients with generalized breast cancer in the department of oncology and breast reconstructive surgery of P.A. Herzen Moscow Cancer Research Institute from 2000 to 2012. The average age was (58±1,1) years. Invasive ductul carcinoma was verified in128 patients (65,3%), invasive lobular carcinoma-33 (16,8%), complex form - 19 (9,7%). Complex palliative care involving drug and radiation therapies was performed in two patient groups. The first group includes 124 patients who underwent surgical intervention as complex treatment, the second group includes 72 patients with only medical therapy. Standard systemic therapy was given to all patients. Results. Overall, 3-and 5-year survival in fist group was 43,8 and 21%, in second - 15,1 and 9,3% respectively [p=0,00002 log-rank]. Median survival in patients with surgical treatment composed 32 months, in patients with only systemic therapy-21. The factors having influencing an influence on the prognosis and the quality of life outcomes for of patients with generalized breast cancer were are also studied: hormone-dependent tumor, Her2/neu hyper-expression, reproductive function status (age, menopause existence). Conclusion.Removing primary breast tumor in patients with generalized breast cancer improve long-term outcomes. Three- and five-year survival increased by 28,7 and 16,3% respectively, and median survival–for 11 months. These patients may benefit from resection of the breast tumor. One explanation for the effect of this resection is that reducing the tumor load influences metastatic growth.Keywords: breast cancer, combination therapy, factors of prognosis, primary tumor
Procedia PDF Downloads 4162014 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6562013 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method
Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene
Abstract:
This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems
Procedia PDF Downloads 2552012 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys
Authors: A. Azizi, M. Toubane, L. Chetibi
Abstract:
Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution
Procedia PDF Downloads 4402011 Magnetohydrodynamic Flow over an Exponentially Stretching Sheet
Authors: Raj Nandkeolyar, Precious Sibanda
Abstract:
The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables.Keywords: aligned magnetic field, exponentially stretching sheet, induced magnetic field, magnetohydrodynamic flow
Procedia PDF Downloads 4542010 Adaptive Transmission Scheme Based on Channel State in Dual-Hop System
Authors: Seung-Jun Yu, Yong-Jun Kim, Jung-In Baik, Hyoung-Kyu Song
Abstract:
In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed.Keywords: adaptive transmission, channel state, dual-hop, hierarchical modulation, relay
Procedia PDF Downloads 3802009 Multimodal Convolutional Neural Network for Musical Instrument Recognition
Authors: Yagya Raj Pandeya, Joonwhoan Lee
Abstract:
The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean
Procedia PDF Downloads 2152008 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: basket option, jump diffusion, radial basis function, RBF-PUM
Procedia PDF Downloads 3542007 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 912006 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions
Authors: M. Y. Malika, Farzana, Abdul Rehman
Abstract:
The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution
Procedia PDF Downloads 5892005 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 312