Search results for: e2e reliability prediction
3737 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect
Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev
Abstract:
The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.Keywords: film condensation, heat transfer, plain tube, shear stress
Procedia PDF Downloads 2453736 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM
Authors: Jaechoul Shin, Juhwan Hwang
Abstract:
In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork
Procedia PDF Downloads 4423735 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1973734 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two
Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine
Abstract:
This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls
Procedia PDF Downloads 3373733 Trip Reduction in Turbo Machinery
Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto
Abstract:
Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBTKeywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start
Procedia PDF Downloads 763732 Design Components and Reliability Aspects of Municipal Waste Water and SEIG Based Micro Hydro Power Plant
Authors: R. K. Saket
Abstract:
This paper presents design aspects and probabilistic approach for generation reliability evaluation of an alternative resource: municipal waste water based micro hydro power generation system. Annual and daily flow duration curves have been obtained for design, installation, development, scientific analysis and reliability evaluation of the MHPP. The hydro potential of the waste water flowing through sewage system of the BHU campus has been determined to produce annual flow duration and daily flow duration curves by ordering the recorded water flows from maximum to minimum values. Design pressure, the roughness of the pipe’s interior surface, method of joining, weight, ease of installation, accessibility to the sewage system, design life, maintenance, weather conditions, availability of material, related cost and likelihood of structural damage have been considered for design of a particular penstock for reliable operation of the MHPP. A MHPGS based on MWW and SEIG is designed, developed, and practically implemented to provide reliable electric energy to suitable load in the campus of the Banaras Hindu University, Varanasi, (UP), India. Generation reliability evaluation of the developed MHPP using Gaussian distribution approach, safety factor concept, peak load consideration and Simpson 1/3rd rule has presented in this paper.Keywords: self excited induction generator, annual and daily flow duration curve, sewage system, municipal waste water, reliability evaluation, Gaussian distribution, Simpson 1/3rd rule
Procedia PDF Downloads 5583731 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method
Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan
Abstract:
Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.Keywords: hotforging, engine valve, fracture, tooling
Procedia PDF Downloads 2793730 Effect of Chemistry Museum Artifacts on Students’ Memory Enhancement and Interest in Radioactivity in Calabar Education Zone, Cross River State, Nigeria
Authors: Hope Amba Neji
Abstract:
The study adopted a quasi-experimental design. Two schools were used for the experimental study, while one school was used for the control. The experimental groups were subjected to treatment for four weeks with chemistry museum artifacts and a visit as made to the museum so that learners would have real-life learning experiences with museum resources, while the control group was taught with the conventional method. The instrument for the study was a 20-item Chemistry Memory Test (CMT) and a 10-item Chemistry Interest Questionnaire (CIQ). The reliability was ascertained using (KR-20) and alpha reliability coefficient, which yielded a reliability coefficient of .83 and .81, respectively. Data obtained was analyzed using Analysis of Covariance (ANCOVA) and Analysis of variance (ANOVA) at 0.05 level of significance. Findings revealed that museum artifacts have a significant effect on students’ memory enhancement and interest in chemistry. It was recommended chemistry learning should be enhanced, motivating and real with museum artifacts, which significantly aid memory enhancement and interest in chemistry.Keywords: museum artifacts, memory, chemistry, atitude
Procedia PDF Downloads 753729 Effective Retirement Planning: Exploring Financial Planning Behavior in Malaysia
Authors: Stanley Yap Peng Lok, Chong Wei Ying, Leow Hon Wei, Fatemeh Kimiyaghalam
Abstract:
Purpose: This paper examines how people treat on the importance of financial planning for their retirement. There is lack of standard instrument that enable us to access the retirement planning behavior. This paper studies the reliability and validity of a proposed scale for accessing this behavior. Design/methodology/approach: The Retirement Planning Behavior scale (RPB) is developed from the results of reviewing different papers on this topic. A total of 900 Malaysians from the age of 18 and above are used as the sample. Findings: Our results show, firstly, the RPB meets all criteria from the instrument reliability and validity which based on the theory of planned behavior. Second, our findings propose two components for this RPB scale; attitude toward planning for retirement and intention towards retirement planning behavior. Practical implication: An effective retirement planning achieves financial independence after the retirement. Our findings have important implications for the scope and significance of the retirement planning behavior measurement, especially for retirees. Originality/value: This study proposes a new approach to cater consumers’ needs for retirement planning. Therefore, consumers are able to achieve financial independence in their retirement age.Keywords: retirement planning behavior (RPB) scale, reliability, validity, retirement planning, financial independence
Procedia PDF Downloads 4073728 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4693727 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 733726 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1443725 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 883724 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion
Authors: Omran M. Kenshel, Alan J. O'Connor
Abstract:
Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability
Procedia PDF Downloads 4733723 The Effect of Body Positioning on Upper-Limb Arterial Occlusion Pressure and the Reliability of the Method during Blood Flow Restriction Training
Authors: Stefanos Karanasios, Charkleia Koutri, Maria Moutzouri, Sofia A. Xergia, Vasiliki Sakellari, George Gioftsos
Abstract:
The precise calculation of arterial occlusive pressure (AOP) is a critical step to accurately prescribe individualized pressures during blood flow restriction training (BFRT). AOP is usually measured in a supine position before training; however, previous reports suggested a significant influence in lower limb AOP across different body positions. The aim of the study was to investigate the effect of three different body positions on upper limb AOP and the reliability of the method for its standardization in clinical practice. Forty-two healthy participants (Mean age: 28.1, SD: ±7.7) underwent measurements of upper limb AOP in supine, seated, and standing positions by three blinded raters. A cuff with a manual pump and a pocket doppler ultrasound were used. A significantly higher upper limb AOP was found in seated compared with supine position (p < 0.031) and in supine compared with standing position (p < 0.031) by all raters. An excellent intraclass correlation coefficient (0.858- 0.984, p < 0.001) was found in all positions. Upper limb AOP is strongly dependent on body position changes. The appropriate measurement position should be selected to accurately calculate AOP before BFRT. The excellent inter-rater reliability and repeatability of the method suggest reliable and consistent results across repeated measurements.Keywords: Kaatsu training, blood flow restriction training, arterial occlusion, reliability
Procedia PDF Downloads 2123722 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 1613721 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities
Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.
Abstract:
This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.Keywords: acceptance, lecturers, open educational resources, knowledge sharing
Procedia PDF Downloads 733720 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2083719 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products
Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li
Abstract:
Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the pre-processed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanisms consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the true average life available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.Keywords: accelerated storage life test, failure mechanisms consistency, life distribution, reliability
Procedia PDF Downloads 3883718 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 83717 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2313716 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 1173715 Investigating the Relationship Between the Auditor’s Personality Type and the Quality of Financial Reporting in Companies Listed on the Tehran Stock Exchange
Authors: Seyedmohsen Mortazavi
Abstract:
The purpose of this research is to investigate the personality types of internal auditors on the quality of financial reporting in companies admitted to the Tehran Stock Exchange. Personality type is one of the issues that emphasizes the field of auditors' behavior, and this field has attracted the attention of shareholders and stock companies today, because the auditors' personality can affect the type of financial reporting and its quality. The research is applied in terms of purpose and descriptive and correlational in terms of method, and a researcher-made questionnaire was used to check the research hypotheses. The statistical population of the research is all the auditors, accountants and financial managers of the companies admitted to the Tehran Stock Exchange, and due to their large number and the uncertainty of their exact number, 384 people have been considered as a statistical sample using Morgan's table. The researcher-made questionnaire was approved by experts in the field, and then its validity and reliability were obtained using software. For the validity of the questionnaire, confirmatory factor analysis was first examined, and then using divergent and convergent validity; Fornell-Larker and cross-sectional load test of the validity of the questionnaire were confirmed; Then, the reliability of the questionnaire was examined using Cronbach's alpha and composite reliability, and the results of these two tests showed the appropriate reliability of the questionnaire. After checking the validity and reliability of the research hypotheses, PLS software was used to check the hypotheses. The results of the research showed that the personalities of internal auditors can affect the quality of financial reporting; The personalities investigated in this research include neuroticism, extroversion, flexibility, agreeableness and conscientiousness, all of these personality types can affect the quality of financial reporting.Keywords: flexibility, quality of financial reporting, agreeableness, conscientiousness
Procedia PDF Downloads 1023714 Fracture and Fatigue Crack Growth Analysis and Modeling
Authors: Volkmar Nolting
Abstract:
Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring
Procedia PDF Downloads 493713 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling
Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao
Abstract:
In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis
Procedia PDF Downloads 1463712 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 6923711 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity
Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink
Abstract:
The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction
Procedia PDF Downloads 3123710 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique
Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian
Abstract:
Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction
Procedia PDF Downloads 793709 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 3383708 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 194