Search results for: component analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29426

Search results for: component analysis

29066 Preventive Effect of Locoregional Analgesia Techniques on Chronic Post-Surgical Neuropathic Pain: A Prospective Randomized Study

Authors: Beloulou Mohamed Lamine, Bouhouf Attef, Meliani Walid, Sellami Dalila, Lamara Abdelhak

Abstract:

Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with post-surgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariate analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature or component, particularly in surgeries that are more prone to chronicization.

Keywords: chronic postsurgical pain, postsurgical chronic neuropathic pain, regional anesthesia and analgesia techniques (RAAT), neuropathic pain score dn2, preventive impact

Procedia PDF Downloads 30
29065 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation

Authors: Pavel Chmelar, Martin Dobrovolny

Abstract:

Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.

Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map

Procedia PDF Downloads 433
29064 Fracture and Fatigue Crack Growth Analysis and Modeling

Authors: Volkmar Nolting

Abstract:

Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.

Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring

Procedia PDF Downloads 51
29063 Hybrid versus Cemented Fixation in Total Knee Arthroplasty: Mid-Term Follow-Up

Authors: Pedro Gomes, Luís Sá Castelo, António Lopes, Marta Maio, Pedro Mota, Adélia Avelar, António Marques Dias

Abstract:

Introduction: Total Knee Arthroplasty (TKA) has contributed to improvement of patient`s quality of life, although it has been associated with some complications including component loosening and polyethylene wear. To prevent these complications various fixation techniques have been employed. Hybrid TKA with cemented tibial and cementless femoral components have shown favourable outcomes, although it still lack of consensus in the literature. Objectives: To evaluate the clinical and radiographic results of hybrid versus cemented TKA with an average 5 years follow-up and analyse the survival rates. Methods: A retrospective study of 125 TKAs performed in 92 patients at our institution, between 2006 to 2008, with a minimum follow-up of 2 years. The same prosthesis was used in all knees. Hybrid TKA fixation was performed in 96 knees, with a mean follow-up of 4,8±1,7 years (range, 2–8,3 years) and 29 TKAs received fully cemented fixation with a mean follow-up of 4,9±1,9 years (range, 2-8,3 years). Selection for hybrid fixation was nonrandomized and based on femoral component fit. The Oxford Knee Score (OKS 0-48) was evaluated for clinical assessment and Knee Society Roentgenographic Evaluation Scoring System was used for radiographic outcome. The survival rate was calculated using the Kaplan-Meier method, with failures defined as revision of either the tibial or femoral component for aseptic failures and all-causes (aseptic and infection). Analysis of survivorship data was performed using the log-rank test. SPSS (v22) was the computer program used for statistical analysis. Results: The hybrid group consisted of 72 females (75%) and 24 males (25%), with mean age 64±7 years (range, 50-78 years). The preoperative diagnosis was osteoarthritis (OA) in 94 knees (98%), rheumatoid arthritis (RA) in 1 knee (1%) and Posttraumatic arthritis (PTA) in 1 Knee (1%). The fully cemented group consisted of 23 females (79%) and 6 males (21%), with mean age 65±7 years (range, 47-78 years). The preoperative diagnosis was OA in 27 knees (93%), PTA in 2 knees (7%). The Oxford Knee Scores were similar between the 2 groups (hybrid 40,3±2,8 versus cemented 40,2±3). The percentage of radiolucencies seen on the femoral side was slightly higher in the cemented group 20,7% than the hybrid group 11,5% p0.223. In the cemented group there were significantly more Zone 4 radiolucencies compared to the hybrid group (13,8% versus 2,1% p0,026). Revisions for all causes were performed in 4 of the 96 hybrid TKAs (4,2%) and 1 of the 29 cemented TKAs (3,5%). The reason for revision was aseptic loosening in 3 hybrid TKAs and 1 of the cemented TKAs. Revision was performed for infection in 1 hybrid TKA. The hybrid group demonstrated a 7 years survival rate of 93% for all-cause failures and 94% for aseptic loosening. No significant difference in survivorship was seen between the groups for all-cause failures or aseptic failures. Conclusions: Hybrid TKA yields similar intermediate-term results and survival rates as fully cemented total knee arthroplasty and remains a viable option in knee joint replacement surgery.

Keywords: hybrid, survival rate, total knee arthroplasty, orthopaedic surgery

Procedia PDF Downloads 594
29062 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 72
29061 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria

Authors: R. Santos Alimi

Abstract:

Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.

Keywords: public expenditure, economic growth, optimum level, fully modified OLS

Procedia PDF Downloads 422
29060 NMR-Based Metabolomics Reveals Dietary Effects in Liver Extracts of Arctic Charr (Salvelinus alpinus) and Tilapia (Oreochromis mossambicus) Fed Different Levels of Starch

Authors: Rani Abro, Ali Ata Moazzami, Jan Erik Lindberg, Torbjörn Lundh

Abstract:

The effect of dietary starch level on liver metabolism in Arctic charr (Salvelinus alpinus) and tilapia (Oreochromis mossambicus) was studied using 1H-NMR based metabolomics. Fingerlings were fed iso-nitrogenous diets containing 0, 10 and 20 % starch for two months before liver samples were collected for metabolite analysis. Metabolite profiling was performed using 600 MHz NMR Chenomx software. In total, 48 metabolites were profiled in liver extracts from both fish species. Following the profiling, principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLC-DA) were performed. These revealed that differences in the concentration of significant metabolites were correlated to the dietary starch level in both species. The most prominent difference in metabolic response to starch feeding between the omnivorous tilapia and the carnivorous Arctic charr was an indication of higher anaerobic metabolism in Arctic charr. The data also indicated that amino acid and pyrimidine metabolism was higher in Artic charr than in tilapia.

Keywords: arctic charr, metabolomics, starch, tilapia

Procedia PDF Downloads 458
29059 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach

Authors: Eric Mxolisi Mkhondo

Abstract:

Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.

Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism

Procedia PDF Downloads 165
29058 Assessment of the Psychoemotional State and Quality of Life at Women Teachers of the Senior Age Group

Authors: Meruyert Burumbayeva, Aiman Mussina, Gulnoza Aldabekova, Aiymtory Abildaeva, Gulshat Yerdenova, Aigul Kairgeldina

Abstract:

this article introduces results of a research which purpose is evaluation the quality of life, the psychophysiological status, expressiveness of uneasiness at women teachers of the senior age group. At a research of quality of life of teachers the lowest values have been received from the indicators of the general state of health, vital activity, role emotional functioning and mental health. Every second woman-teacher noted high personal uneasiness; every third woman-teacher noted moderate situational uneasiness, confirming the existence of a professional stress. Revealed the interrelation between alarming conditions and a decrease in a mental component of health. Moreover, there was revealed exhaustion signs at low activity values that indicate a high tension of labor process.

Keywords: expressiveness of uneasiness, quality of life, psychophysiological status, component of health

Procedia PDF Downloads 294
29057 The Effect of an Electric Field on the Falling Film Evaporation

Authors: Abdelaziz Nasr

Abstract:

This work conducted numerical simulations to examine the impact of the static electric field on a falling-film evaporation system. A constant electric field can alter the dynamics of a liquid film by modifying the heat and mass transfer properties of the system. The geometry problem consists of two parallel plates in a vertical channel, with the left plate experiencing a constant heat flux and the liquid flowing downward over it, while the right plate remains dry and maintains a constant temperature. The gaseous component consists of dry air and water vapor, whilst the liquid component comprises a thin coating of water. The results suggest that the electric field's impact on heat and mass transport, as well as the evaporation of the liquid sheet, is minimal. Experimental evidence demonstrates that the electric field exerts a minor influence on heat, mass transport, and liquid film evaporation at elevated electric field intensities.

Keywords: electric field, evaporation, liquid film, heat and mass transfer

Procedia PDF Downloads 12
29056 Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk

Authors: A. Deswal, N. S. Deora, H. N. Mishra

Abstract:

The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyse spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), discriminant factorial analysis (DFA) and soft independent modelling by class analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable counts showed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20 hours and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.

Keywords: electronic-nose, bacteriological, shelf-life, classification

Procedia PDF Downloads 258
29055 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 137
29054 Reducing Anxiety in Elite Athletes: The Effects of Implementing a Moderate Running Regimen, a Literature Review

Authors: Spencer C. Pratt

Abstract:

Anxiety is an emotional response that many, if not all, elite athletes struggle with on a daily basis. Recently, attention has been drawn to the strong need for athletes to receive mental training in order to help remedy the situation. The conceptual paper explores the effectiveness of a mental training component, based on the anxiolytic effects of exercise by investigating the positive relationship between physical activity and mental health through a comprehensive literature review. The review synthesizes pertinent research regarding the need for mental skills training among elite athletes and the anxiolytic effects of exercise. The paper concludes that with clear positive results from further experimentation with a (moderate intensity) running regimen, a wide range of elite athletes experiencing anxiety problems may have a viable solution.

Keywords: anxiety, mental training component, anxiolytic effects, elite athletes, moderate intensity running, mental skills training, running regimen

Procedia PDF Downloads 355
29053 Analysis the Nexus among Ethnic Polarization, Globalization and Export Diversification of Pakistan

Authors: Naima Mubeen

Abstract:

Multi-ethnic societies play a crucial role in managing relevant policies and their implication. Pakistan is a classic case of multicultural identity, social evils and a wide-range of preferential ethnic policies. The major objectives of this study are to explore the relationship between ethnic diversity, globalization and export diversification of Pakistan. For empirical analysis of this underlying nexus by utilizing time series data from 1970 to 2016, this study used the autoregressive distributed lags (ARDL) technique. The empirical finding of this study reveals that ethnic diversity is an essential component for enhancing globalization and export diversification in the case of Pakistan. Regarding the promotion of globalization and export diversification at different forums of the country, this study suggested that government needs to take steps for the promotion of society towards more cohesiveness by fair justice-based system and awareness programs.

Keywords: ethnic diversity, social exclusion, globalization, export diversification

Procedia PDF Downloads 116
29052 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France

Authors: Aiman Mazhar Qureshi, Ahmed Rachid

Abstract:

Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.

Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation

Procedia PDF Downloads 151
29051 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease

Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda

Abstract:

Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.

Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline

Procedia PDF Downloads 147
29050 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors

Authors: Jing Yuan, Hongwei Yang

Abstract:

This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.

Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel

Procedia PDF Downloads 336
29049 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 210
29048 Heavy Metal Concentrations in Sediments of Sta. Maria River, Laguna

Authors: Francis Angelo A. Sta. Ana

Abstract:

Heavy metal pollutants are a major environmental concern in built-up areas in the Philippines. It causes negative effects on aquatic organisms and human health. Heavy metals concentrations of chromium, mercury, lead, copper, arsenic, zinc, cadmium, and nickel were investigated in Sta. Maria river, in Laguna. A total of 16 sediment samples were collected from the river at four stations. Atomic absorption spectroscopy (AAS) was used for element detection. It is found that copper is associated with chromium based on statistical analysis using principal component analysis (PCA). Conduct of Sediment Quality Guideline (SQG) revealed that chromium has high toxicity due to values higher than Sediment Quality Guidelines Probable Effect Level (SQG’s PEL). Copper, Nickel, and Pb fall on average toxicity while others are below PEL and effect range low (ERL).

Keywords: heavy metals, pollutants, sediment quality guidelines, atomic absorption spectroscopy

Procedia PDF Downloads 151
29047 The Factors of Supply Chain Collaboration

Authors: Ghada Soltane

Abstract:

The objective of this study was to identify factors impacting supply chain collaboration. a quantitative study was carried out on a sample of 84 Tunisian industrial companies. To verify the research hypotheses and test the direct effect of these factors on supply chain collaboration a multiple regression method was used using SPSS 26 software. The results show that there are four factors direct effects that affect supply chain collaboration in a meaningful and positive way, including: trust, engagement, information sharing and information quality

Keywords: supply chain collaboration, factors of collaboration, principal component analysis, multiple regression

Procedia PDF Downloads 51
29046 Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4

Authors: Li Liang

Abstract:

Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production.

Keywords: thermodynamics, acid-soluble titanium slag, preparation of TiCl4, chlorination

Procedia PDF Downloads 596
29045 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour

Abstract:

The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 351
29044 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method

Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović

Abstract:

The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.

Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR

Procedia PDF Downloads 364
29043 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311
29042 The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide

Authors: Jianli Chang, Yusheng Zhang, Yali Yao, Diane Hildebrandt, Xinying Liu

Abstract:

The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1.

Keywords: ethene hydroformylation, reduced graphene oxide, rhodium cobalt bimetallic catalyst, the effect of feed-gas ratio

Procedia PDF Downloads 164
29041 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 379
29040 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 518
29039 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 435
29038 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model

Authors: Jai Heui Kim, Sotheara Veng

Abstract:

This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.

Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility

Procedia PDF Downloads 299
29037 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 99