Search results for: cloud computing systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10366

Search results for: cloud computing systems

10006 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference

Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo

Abstract:

Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.

Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference

Procedia PDF Downloads 250
10005 Exploring MPI-Based Parallel Computing in Analyzing Very Large Sequences

Authors: Bilal Wajid, Erchin Serpedin

Abstract:

The health industry is aiming towards personalized medicine. If the patient’s genome needs to be sequenced it is important that the entire analysis be completed quickly. This paper explores use of parallel computing to analyze very large sequences. Two cases have been considered. In the first case, the sequence is kept constant and the effect of increasing the number of MPI-based processes is evaluated in terms of execution time, speed and efficiency. In the second case the number of MPI-based processes have been kept constant whereas, the length of the sequence was increased.

Keywords: parallel computing, alignment, genome assembly, alignment

Procedia PDF Downloads 275
10004 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
10003 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 102
10002 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
10001 Students’ Willingness to Use Public Computing Facilities at a Library

Authors: Norbayah Mohd Suki, Norazah Mohd Suki

Abstract:

This study aims to examine relationships between attitude, self-efficacy, and subjective norm with students’ behavioural intention to use public computing facilities at a library. Data was collected from 200 undergraduate students enrolled at a higher learning institution in the Federal Territory of Labuan, Malaysia via a structured questionnaire comprising closed-ended questions. Data was analyzed using multiple regression analysis. The results show that students’ behavioural intention to use public computing facilities at the library is widely affected by subjective norm factor i.e. influence of the support of family members, friends and neighbours. The findings of this study provide a better understanding of factors likely to influence students’ behavioural intention to use public computing facilities at a library. It also offers valuable insights into factors which university librarians need to focus on to improve students’ behavioural intention to actively use public computing facilities at a library for quality information retrieval. Direction for future research is also presented.

Keywords: attitude, self-efficacy, subjective norm, behavioural intention

Procedia PDF Downloads 446
10000 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 297
9999 Comparison of Blockchain Ecosystem for Identity Management

Authors: K. S. Suganya, R. Nedunchezhian

Abstract:

In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.

Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity

Procedia PDF Downloads 130
9998 A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.

Keywords: image processing, distributed environment, mobile agents, parallel and distributed computing

Procedia PDF Downloads 410
9997 Digital Immunity System for Healthcare Data Security

Authors: Nihar Bheda

Abstract:

Protecting digital assets such as networks, systems, and data from advanced cyber threats is the aim of Digital Immunity Systems (DIS), which are a subset of cybersecurity. With features like continuous monitoring, coordinated reactions, and long-term adaptation, DIS seeks to mimic biological immunity. This minimizes downtime by automatically identifying and eliminating threats. Traditional security measures, such as firewalls and antivirus software, are insufficient for enterprises, such as healthcare providers, given the rapid evolution of cyber threats. The number of medical record breaches that have occurred in recent years is proof that attackers are finding healthcare data to be an increasingly valuable target. However, obstacles to enhancing security include outdated systems, financial limitations, and a lack of knowledge. DIS is an advancement in cyber defenses designed specifically for healthcare settings. Protection akin to an "immune system" is produced by core capabilities such as anomaly detection, access controls, and policy enforcement. Coordination of responses across IT infrastructure to contain attacks is made possible by automation and orchestration. Massive amounts of data are analyzed by AI and machine learning to find new threats. After an incident, self-healing enables services to resume quickly. The implementation of DIS is consistent with the healthcare industry's urgent requirement for resilient data security in light of evolving risks and strict guidelines. With resilient systems, it can help organizations lower business risk, minimize the effects of breaches, and preserve patient care continuity. DIS will be essential for protecting a variety of environments, including cloud computing and the Internet of medical devices, as healthcare providers quickly adopt new technologies. DIS lowers traditional security overhead for IT departments and offers automated protection, even though it requires an initial investment. In the near future, DIS may prove to be essential for small clinics, blood banks, imaging centers, large hospitals, and other healthcare organizations. Cyber resilience can become attainable for the whole healthcare ecosystem with customized DIS implementations.

Keywords: digital immunity system, cybersecurity, healthcare data, emerging technology

Procedia PDF Downloads 67
9996 Providing Reliability, Availability and Scalability Support for Quick Assist Technology Cryptography on the Cloud

Authors: Songwu Shen, Garrett Drysdale, Veerendranath Mannepalli, Qihua Dai, Yuan Wang, Yuli Chen, David Qian, Utkarsh Kakaiya

Abstract:

Hardware accelerator has been a promising solution to reduce the cost of cloud data centers. This paper investigates the QoS enhancement of the acceleration of an important datacenter workload: the webserver (or proxy) that faces high computational consumption originated from secure sockets layer (SSL) or transport layer security (TLS) procession in the cloud environment. Our study reveals that for the accelerator maintenance cases—need to upgrade driver/firmware or hardware reset due to hardware hang; we still can provide cryptography services by switching to software during maintenance phase and then switching back to accelerator after maintenance. The switching is seamless to server application such as Nginx that runs inside a VM on top of the server. To achieve this high availability goal, we propose a comprehensive fallback solution based on Intel® QuickAssist Technology (QAT). This approach introduces an architecture that involves the collaboration between physical function (PF) and virtual function (VF), and collaboration among VF, OpenSSL, and web application Nginx. The evaluation shows that our solution could provide high reliability, availability, and scalability (RAS) of hardware cryptography service in a 7x24x365 manner in the cloud environment.

Keywords: accelerator, cryptography service, RAS, secure sockets layer/transport layer security, SSL/TLS, virtualization fallback architecture

Procedia PDF Downloads 159
9995 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
9994 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event

Authors: Nadine Ayasha

Abstract:

Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.

Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline

Procedia PDF Downloads 159
9993 The Right to Data Portability and Its Influence on the Development of Digital Services

Authors: Roman Bieda

Abstract:

The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.

Keywords: data portability, digital market, GDPR, personal data

Procedia PDF Downloads 473
9992 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)

Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi

Abstract:

Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.

Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding

Procedia PDF Downloads 104
9991 Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems

Authors: Samuel Kaspi, Sitalakshmi Venkatraman

Abstract:

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Keywords: in-memory database, disk-based system, hybrid database, concurrency control

Procedia PDF Downloads 417
9990 Optimization of Cloud Classification Using Particle Swarm Algorithm

Authors: Riffi Mohammed Amine

Abstract:

A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.

Keywords: remote sensing, particle swarm optimization, clouds, meteorological image

Procedia PDF Downloads 15
9989 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 89
9988 Virtualizing Attendance and Reducing Impacts on the Environment with a Mobile Application

Authors: Paulo R. M. Andrade, Adriano B. Albuquerque, Otávio F. Frota, Robson V. Silveira, Fátima A. da Silva

Abstract:

Information technology has been gaining more and more space whether in industry, commerce or even for personal use, but the misuse of it brings harm to the environment and human health as a result. Contribute to the sustainability of the planet is to compensate the environment, all or part of what withdraws it. The green computing also came to propose practical for use in IT in an environmentally correct way in aid of strategic management and communication. This work focuses on showing how a mobile application can help businesses reduce costs and reduced environmental impacts caused by its processes, through a case study of a public company in Brazil.

Keywords: green computing, information technology, e-government, sustainable development, mobile computing

Procedia PDF Downloads 419
9987 A Novel Way to Create Qudit Quantum Error Correction Codes

Authors: Arun Moorthy

Abstract:

Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.

Keywords: qudit, error correction, quantum, qubit

Procedia PDF Downloads 160
9986 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 135
9985 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior

Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj

Abstract:

New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.

Keywords: CS pedagogy, student research, cluster computing, machine learning

Procedia PDF Downloads 102
9984 Cloud Based Supply Chain Traceability

Authors: Kedar J. Mahadeshwar

Abstract:

Concept introduction: This paper talks about how an innovative cloud based analytics enabled solution that could address a major industry challenge that is approaching all of us globally faster than what one would think. The world of supply chain for drugs and devices is changing today at a rapid speed. In the US, the Drug Supply Chain Security Act (DSCSA) is a new law for Tracing, Verification and Serialization phasing in starting Jan 1, 2015 for manufacturers, repackagers, wholesalers and pharmacies / clinics. Similarly we are seeing pressures building up in Europe, China and many countries that would require an absolute traceability of every drug and device end to end. Companies (both manufacturers and distributors) can use this opportunity not only to be compliant but to differentiate themselves over competition. And moreover a country such as UAE can be the leader in coming up with a global solution that brings innovation in this industry. Problem definition and timing: The problem of counterfeit drug market, recognized by FDA, causes billions of dollars loss every year. Even in UAE, the concerns over prevalence of counterfeit drugs, which enter through ports such as Dubai remains a big concern, as per UAE pharma and healthcare report, Q1 2015. Distribution of drugs and devices involves multiple processes and systems that do not talk to each other. Consumer confidence is at risk due to this lack of traceability and any leading provider is at risk of losing its reputation. Globally there is an increasing pressure by government and regulatory bodies to trace serial numbers and lot numbers of every drug and medical devices throughout a supply chain. Though many of large corporations use some form of ERP (enterprise resource planning) software, it is far from having a capability to trace a lot and serial number beyond the enterprise and making this information easily available real time. Solution: The solution here talks about a service provider that allows all subscribers to take advantage of this service. The solution allows a service provider regardless of its physical location, to host this cloud based traceability and analytics solution of millions of distribution transactions that capture lots of each drug and device. The solution platform will capture a movement of every medical device and drug end to end from its manufacturer to a hospital or a doctor through a series of distributor or retail network. The platform also provides advanced analytics solution to do some intelligent reporting online. Why Dubai? Opportunity exists with huge investment done in Dubai healthcare city also with using technology and infrastructure to attract more FDI to provide such a service. UAE and countries similar will be facing this pressure from regulators globally in near future. But more interestingly, Dubai can attract such innovators/companies to run and host such a cloud based solution and become a hub of such traceability globally.

Keywords: cloud, pharmaceutical, supply chain, tracking

Procedia PDF Downloads 527
9983 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 374
9982 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks

Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain

Abstract:

As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.

Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)

Procedia PDF Downloads 192
9981 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI

Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso

Abstract:

The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.

Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI

Procedia PDF Downloads 99
9980 An Improved VM Allocation Algorithm by Utilizing Combined Resource Allocation Mechanism and Released Resources in Cloud Environment

Authors: Md Habibul Ansary, Chandan Garai, Ranjan Dasgupta

Abstract:

Utilization of resources is always a great challenge for any allocation problem, particularly when resource availability is dynamic in nature. In this work VM allocation mechanism has been augmented by providing resources in a combined manner. This approach has some inherent advantages in terms of reduction of wait state for the pending jobs of some users and better utilization of unused resources from the service providers’ point of view. Moreover the algorithm takes care of released resources from the finished jobs as soon as those become available. The proposed algorithm has been explained by suitable example to make the work complete.

Keywords: Bid ratio, cloud service, virtualization, VM allocation problem

Procedia PDF Downloads 396
9979 Training for Digital Manufacturing: A Multilevel Teaching Model

Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia

Abstract:

The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.

Keywords: learning, Industry 4.0, active learning, digital manufacturing

Procedia PDF Downloads 97
9978 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 297
9977 A Proposed Model of E-Marketing Service-Oriented Architecture (E-MSOA)

Authors: Hussein Moselhy, Islam Salam

Abstract:

There have been some challenges and problems which hinder the implementation of the e-marketing systems such as the high cost of information systems infrastructure and maintenance as well as their unavailability within the institution. Also, there is no system which supports all programming languages and different platforms. Another problem is the lack of integration between these systems on one hand and the operating systems and different web browsers on the other hand. No system for customer relationship management is established which recognizes their desires and puts them in consideration while performing e-marketing functions is available. Therefore, the service-oriented architecture emerged as one of the most important techniques and methodologies to build systems that integrate with various operating systems and different platforms and other technologies. This technology allows realizing the data exchange among different applications. The service-oriented architecture represents distributed computing concepts to demonstrate its success in achieving the requirements of systems through web services. It also reflects the appropriate design for the services to use different web services in supporting the requirements of business processes and software users. In a service-oriented environment, web services are deployed on the web in the form of independent services to be accessed without knowledge of the nature of the programs and systems with in. This Paper presents a proposal for a new model which contributes to the application of methods and means of e-marketing with the integration of marketing mix elements to improve marketing efficiency (E-MSOA). And apply it in the educational city of one of the Egyptian sector.

Keywords: service-oriented architecture, electronic commerce, virtual retailing, unified modeling language

Procedia PDF Downloads 428