Search results for: Hepatitis B Virus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 742

Search results for: Hepatitis B Virus

382 Anti-Viral Activity of Ethanolic Extract Derived from Chlorella sp. AARL G049 on Inhibition of Dengue Virus Serotype 2 Infection in vitro

Authors: Suthida Panwong, Jeeraporn Pekkoh, Yingmanee Tragoolpua, Aussara Panya

Abstract:

Dengue virus (DENV) infection is a major public health problem in many countries, especially in tropical and subtropical countries. DENV infection causes dengue fever that can progress to serious conditions of dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), relevant to a high risk of mortality. However, there are no effective treatments available against the manifestation and fatalities. Currently, natural extracts have been widely used for the treatment of infectious diseases due to their safety, non-accumulation in the body, or lower side effects. Chlorella spp. is a microalgae with anti-viral activity, but there is not much report to support its ability to inhibit DENV infection. Thus, this study aimed to investigate the inhibitory effect of ethanolic extract from Chlorella sp. AARL G049, which was explored in Thailand on inhibition of DENV-2 infection. The inhibitory effect on viral infection was assessed using a foci-forming assay (FFA), which revealed that a concentration of 125 µg/mL could inhibit viral infection in Vero cells by 75.45±8.06% when treated at the same time as DENV-2 infection. Moreover, the extract at an equal concentration effectively reduced viral protein synthesis by 90.51±5.48% when assessed in human cell lines using enzyme-linked immunosorbent assay (ELISA). Concordantly, the number of infected cells after treatment was reduced as measured by immunofluorescent assay (IFA). Therefore, the finding of this study supports the potential use of Chlorella sp. extract to suppress DENV infection.

Keywords: viral infection, flavivirus, treatment, natural extract

Procedia PDF Downloads 30
381 Surveillance for African Swine Fever and Classical Swine Fever in Benue State, Nigeria

Authors: A. Asambe, A. K. B. Sackey, L. B. Tekdek

Abstract:

A serosurveillance study was conducted to detect the presence of antibodies to African swine fever virus (ASFV) and Classical swine fever virus in pigs sampled from piggeries and Makurdi central slaughter slab in Benue State, Nigeria. 416 pigs from 74 piggeries across 12 LGAs and 44 pigs at the Makurdi central slaughter slab were sampled for serum. The sera collected were analysed using Indirect Enzyme Linked Immunosorbent Assay (ELISA) test kit to test for antibodies to ASFV, while competitive ELISA test kit was used to test for antibodies to CSFV. Of the 416 pigs from piggeries and 44 pigs sampled from the slaughter slab, seven (1.7%) and six (13.6%), respectively, tested positive to ASFV antibodies and was significantly associated (p < 0.0001). Out of the 12 LGAs sampled, Obi LGA had the highest ASFV antibody detection rate of (4.8%) and was significantly associated (p < 0.0001). None of the samples tested positive to CSFV antibodies. The study concluded that antibodies to CSFV were absent in the sampled pigs in piggeries and at the Makurdi central slaughter slab in Benue State, while antibodies to ASFV were present in both locations; hence, the need to keep an eye open for CSF too since both diseases may pose great risk in the study area. Further studies to characterise the ASFV circulating in Benue State and investigate the possible sources is recommended. Routine surveillance to provide a comprehensive and readily accessible data base to plan for the prevention of any fulminating outbreak is also recommended.

Keywords: African swine fever, classical swine fever, piggery, slaughter slab, surveillance

Procedia PDF Downloads 190
380 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments

Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor

Abstract:

Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.

Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics

Procedia PDF Downloads 94
379 Environmental Contamination of Water Bodies by Waste Produced by Slaughterhouses and the Prevalence of Waterborne Diseases in Kumba Municipality

Authors: Maturin Désiré Sop Sop, Didien Njumba Besende, Samuel Fosso Wamba

Abstract:

This study seeks to examine the nexus between drinking water sources in the Kumba municipality and its related health implications vis-à-vis the recurrent incidences of waterborne diseases such as Typhoid, Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The study adopted a purposive sampling technique in which surveys were conducted between the months of June to December 2022. 150 questionnaires were retrieved from the 210 administered to the affected population of Kosala, Buea Road and Mambanda. Information for the study was collected using surveys, questionnaires, key informant interviews, the laboratory analysis of collected drinking water samples, the researcher’s direct observation as well and hospital reports on the prevalence of waterborne diseases. Water samples from the nearby streams and wells, which were communally used by the local population for drinking, and five slaughterhouses within the affected areas were laboratory tested to determine alterations in their chemical, physical and microbiological characteristics. The collected water samples from all the streams and wells used for drinking were tested for changes in properties such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. These results were then compared with the WHO regulations for water quality. The results from the laboratory analysis of drinking water sources, which were at the same time used by the surrounding abattoirs revealed significant alterations in the water quality parameters such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. This is due to the channeling of untreated wastes into the different drinking water points as well as the inter-use of dirty utensils such as buckets from slaughterhouses to fetch water from the streams and wells that serve as drinking water sources for the local population. On the human health aspect, the results were later compared with hospital data, and they revealed that the consumption of such contaminated water in the localities of Kosala, Mambanda, and Buea road negatively affected the local population because of the high incidences of Typhoid Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The poor management of drinking water sources pollutes streams and significantly exposes the local population to lots of waterborne diseases. Efforts should be made to provide clean pipe-borne water to the affected localities of Kumba as well as to ensure the proper management of wastes.

Keywords: drinking water, diseases, Kumba, municipality

Procedia PDF Downloads 77
378 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
377 African Swine Fewer Situation and Diagnostic Methods in Lithuania

Authors: Simona Pileviciene

Abstract:

On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity.

Keywords: African swine fewer, real-time PCR, wild boar, domestic pig

Procedia PDF Downloads 166
376 Seroprevalence of Herpes Simplex Virus and Rubella Confection in Tropical Regions in Bihar, India

Authors: Bhawana, Roshan Kamal Topno, Maneesh Kumar, Major Madhukar, Krishna Pandey, Ganesh Chandra Sahoo, Manas Ranjan Dikhit, Surya Suman, Devendra Prasad Yadav, Rishikesh Kumar, Pradeep Das

Abstract:

Viral co-infection is now very common across taxa and environments that are involved in congenital infections. Herpes simplex virus (HSV) and Rubella are the two serious viral infections, well categorized in TORCH Syndrome. Here we had endeavoured the seroprevalence of co-infection of HSV and Rubella. Systematic tests have been performed to check the virulence pattern of the co-infection. The study was conducted at Department of Virology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, Bihar, India during January 2018-July 2018. 299 newly cases were attended with the sign and symptoms of HSV and Rubella. After taking written consent forms from all the subjects, blood samples were collected for serological detection. ELISA was performed to detect the presence of IgM antibody level. 12 patients were found to be IgM positive from each HSV and Rubella infection. The findings of our study showed that 6 patients were positive for both HSV and rubella and hence were co-infected. Such co-infection causes severe health problems as it leads to the mortality rate of the patients during viral infectivity. Epidemiologically, proper screening should be needed to check any chance of occurrence of such co-infection in the affected regions in large scale and take suitable preventive approach to decrease the case totality. Concern has to be given to aid proper diagnosis and treatment in order to decrease the spread of HSV and Rubella co-infection.

Keywords: HSV, Rubella, seroprevalence, co-infection, ELISA, viral infectivity

Procedia PDF Downloads 214
375 Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties

Authors: Yik Sin Chan, Bee Ling Chuah, Wei Quan Chan, Ri Jin Cheng, Yan Hang Oon, Kong Soo Khoo, Nam Weng Sit

Abstract:

Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties.

Keywords: bactericidal, Chikungunya virus, extraction, fungicidal

Procedia PDF Downloads 403
374 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases

Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand

Abstract:

Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.

Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement

Procedia PDF Downloads 80
373 Development of an Aerosol Protection Capsule for Patients with COVID-19

Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.

Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation

Procedia PDF Downloads 84
372 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis

Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini

Abstract:

H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.

Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry

Procedia PDF Downloads 155
371 Role of Tyrosine-Phosphorylated STAT3 in Liver Regeneration: Survival, DNA Synthesis, Inflammatory Reaction and Liver Mass Recovery

Authors: JiYoung Park, SueGoo Rhee, HyunAe Woo

Abstract:

In liver regeneration, quiescent hepatocytes need to be primed to fully respond to growth factors such as hepatocyte growth factor. To understand the priming process, it is necessary to analyze patterns of gene expression that occur during liver regeneration after partial hepatectomy (PHx). Recently, tyrosine phosphorylation of signal transducer and activator of transcription 3 (pYSTAT3) has been shown to play an important role in initiating liver regeneration. In order to evaluate the role of pYSTAT3 on liver regeneration after PHx, we used an intrabody which can selectively inhibit pYSTAT3. In our previous studies, an intrabody had been shown that it bound specifically to the pYSTAT3. Adenovirus-mediated expression of the intrabody in HepG2 cells, as well as mouse liver, blocked both accumulation of pYSTAT3 in the nucleus and downstream target of pYSTAT3. In this study, PHx was performed on intrabody-expressing mice and the expression levels of liver regeneration-related genes were analyzed. We also measured liver/body weight ratios and the related cellular signaling pathways were analyzed. Acute phase response genes were reduced in an intrabody-expressing mice during liver regeneration than in control virus-injected mice. However, the time course of liver mass restoration in intrabody-expressing mice was similar to that observed in control virus-injected mice. We also observed that the expression levels of anti-apoptotic genes, such as Bcl2 and Bcl-xL were decreased in intrabody-expressing mice whereas the expression of cell cycle-related genes such as cyclin D1, and c-myc was increased. Liver regeneration after PHx was partially impaired by the selective inhibition of pYSTAT3 with a phosphorylation site-specific intrabody and these results indicated that pYSTAT3 might have limited role in liver mass recovery.

Keywords: STAT3, pYSTAT3, liver regeneration, intrabody

Procedia PDF Downloads 312
370 Comprehensive Evaluation of Oral and Maxillofacial Radiology in "COVID-19"

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The recent coronavirus disease 2019 (COVID-19) occurrence has carried considerabletrials to the world health system, comprising the training of dental and maxillofacial radiology (DMFR). DMFR will keep avital role in healthcare throughout this disaster. Severe acute breathing disease coronavirus 2 (SARS-CoV-2), the virus producing the current coronavirus disease 2019 (COVID-19) pandemic, is not only extremely contagious but can make solemn consequences in susceptible persons comprising dental patients and dental health care personnel (DHCPs). Reactions to COVID-19 have been available by the Cores for Infection Switch and Inhibition and the American Dental Association, but a more detailed answer is necessary for the harmless preparation of oral and maxillofacial radiology. Our goal is to evaluation the existing information just how the illness threatens patients and DHCPs and how to define which patients are possible to be SARS-CoV-2 infected; study how the usage of private shielding utensils and contamination control measures based on recent top observes, and knowledge can decrease the danger of virus spread in radiologic trials; and scrutinize how intraoral radiography, with its actually superior danger of scattering the infection, might be changed by extraoralradiographic methods for definite diagnostic jobs. In the pandemic, teleradiology has been extensively recycled for diagnostic determinations of COVID-19 patients, for discussions with radiologists in crisis cases, or managing of distance among radiology clinics. Dentists can have the digital radiographic images of their emergency patients through online service area also by electronic message or messaging applications to view in their smart phones, laptops, or other electronic devices.

Keywords: radiology, dental, oral, COVID-19, infection

Procedia PDF Downloads 172
369 The Role of Community Beliefs and Practices on the Spread of Ebola in Uganda, September 2022

Authors: Helen Nelly Naiga, Jane Frances Zalwango, Saudah N. Kizito, Brian Agaba, Brenda N Simbwa, Maria Goretti Zalwango, Richard Migisha, Benon Kwesiga, Daniel Kadobera, Alex Ario Riolexus, Sarah Paige, Julie R. Harris

Abstract:

Background: Traditional community beliefs and practices can facilitate the spread of Ebola virus during outbreaks. On September 20, 2022, Uganda declared a Sudan Virus Disease (SVD) outbreak after a case was confirmed in Mubende District. During September–November 2022, the outbreak spread to eight additional districts. We investigated the role of community beliefs and practices in the spread of SUDV in Uganda in 2022. Methods: A qualitative study was conducted in Mubende, Kassanda, and Kyegegwa districts in February 2023. We conducted nine focus group discussions (FGDs) and six key informant interviews (KIIs). FGDs included SVD survivors, household members of SVD patients, traditional healers, religious leaders, and community leaders. Key informants included community, political, and religious leaders, traditional healers, and health workers. We asked about community beliefs and practices to understand if and how they contributed to the spread of SUDV. Interviews were recorded, translated, transcribed, and analyzed thematically. Results: Frequently-reported themes included beliefs that the community deaths, later found to be due to SVD, were the result of witchcraft or poisoning. Key informants reported that SVD patients frequently first consulted traditional healers or spiritual leaders before seeking formal healthcare, and noted that traditional healers treated patients with signs and symptoms of SVD without protective measures. Additional themes included religious leaders conducting laying-on-of-hands prayers for SVD patients and symptomatic contacts, SVD patients and their symptomatic contacts hiding in friends’ homes, and exhumation of SVD patients originally buried in safe and dignified burials, to enable traditional burials. Conclusion: Multiple community beliefs and practices likely promoted SVD outbreak spread during the 2022 outbreak in Uganda. Engaging traditional and spiritual healers early during similar outbreaks through risk communication and community engagement efforts could facilitate outbreak control. Targeted community messaging, including clear biological explanations for clusters of deaths and information on the dangers of exhuming bodies of SVD patients, could similarly facilitate improved control in future outbreaks in Uganda.

Keywords: Ebola, Sudan virus, outbreak, beliefs, traditional

Procedia PDF Downloads 55
368 Prevalence of Diabetes Mellitus Among Human Immune Deficiency Virus-Positive Patients Under Anti-retroviral Attending in Rwanda, a Case Study of University Teaching Hospital of Butare

Authors: Venuste Kayinamura, V. Iyamuremye, A. Ngirabakunzi

Abstract:

Anti-retroviral therapy (ART) for HIV patient can cause a deficiency in glucose metabolism by promoting insulin resistance, glucose intolerance, and diabetes, diabetes mellitus keep increasing among HIV-infected patients worldwide but there is limited data on levels of blood glucose and its relationship with antiretroviral drugs (ARVs) and HIV-infection worldwide, particularly in Rwanda. A convenient sampling strategy was used in this study and it involved 323 HIV patients (n=323). Patients who are HIV positive under ARVs were involved in this study. The patient’s blood glucose was analyzed using an automated machine or glucometer (COBAS C 311). Data were analyzed using Microsoft Excel and SPSS V. 20.0 and presented in percentages. The highest diabetes mellitus prevalence was 93.33 % in people aged >40 years while the lowest diabetes mellitus prevalence was 6.67% in people aged between 21-and 40 years. The P-value was (0.021). Thus, there is a significant association between age and diabetes occurrence. The highest diabetes mellitus prevalence was 28.2% in patients under ART treatment for more than 10 years, 16.7% were <5years while 20% of patients were on ART treatment between 5-10 years. The P-value here is (0.03), thus the incidence of diabetes is associated with long-term ART use in HIV-infected patients. This study assessed the prevalence of diabetes among HIV-infected patients under ARVs attending the University Teaching Hospital of Butare (CHUB), it shows that the prevalence of diabetes is high in HIV-infected patients under ARTs. This study found no significant relationship between gender and diabetes mellitus growth. Therefore, regular assessment of diabetes mellitus especially among HIV-infected patients under ARVs is highly recommended to control other health issues caused by diabetes mellitus.

Keywords: anti-retroviral, diabetes mellitus, antiretroviral therapy, human immune deficiency virus

Procedia PDF Downloads 113
367 Cytotoxic, Antimicrobial and Antiviral Activities of Acovenoside A: A Cardenolide Isolated from an Egyptian Cultivar of Acokanthera spectabilis Leaves

Authors: Howaida I. Abd-Alla, Amal Z. Hassan, Maha Soltan, Atef G. Hanna, Mounir M. El-Safty

Abstract:

Acokanthera oblongifolia (Apocynaceae) is used for treatment of several infection diseases and is a well-known cardiac glycoside-containing plant. The infusion of their leaves is gargled to treat tonsillitis and is used medicinally to treat snakebites. The total cardiac glycosides content in the leaves was determined by referring to gitoxigenin as a reference compound. Two triterpenes, lup-20(29)-en-3β-ol (1) and oleanolic acid (2); two cardenolides, acovenoside A (3) and acobioside A (4) were isolated from the ethyl acetate extract. Their structures were determined on the basis of spectral analysis. Major constituents isolated from this species were evaluated for cytotoxicity against normal lung cell line (Wi38) and antimicrobial activities against Gram-positive (two strains) and Gram-negative bacteria (four strains), yeast-like fungi (two strains) and fungi (five strains). The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. Their viral inhibitory effects against avian influenza virus type A (AI-H5N1) and Newcastle disease virus (NDV) in specific pathogen free (SPF) embryonated chicken eggs (ECE), chicken embryo fibroblasts (CEF) and Vero cells were evaluated. The cardenolide (3) showed viral inhibitory effects against AI-H5N1 and NDV in SPF ECE. The two cardenolides isolated have shown potent cytotoxicity against Vero cells. Compound (3) showed potent anti-Gram-negative bacteria activity. These results suggested that acovenoside A might be promising for future antiviral and antimicrobial drug design.

Keywords: Acokanthera, AI-H5N1, Cardenolides, NDV, SPF-ECE, VERO, Wi38 , Microbe

Procedia PDF Downloads 178
366 Illness Experience Without Illness: A Qualitative Study on the Lived Experience of Young Adults During the COVID-19 Pandemic

Authors: Gemma Postil, Claire Zanin, Michael Halpin, Caroline Ritter

Abstract:

Illness experience research typically focuses on people that are living with a medical condition; however, the broad consequences of the COVID-19 pandemic are impacting those without the virus itself, as many experienced extensive lockdowns, social isolation, and distress. Drawing on conceptual work in the illness experience literature, we argue that policy and social changes tied to COVID-19 produce biographical disruptions. In this sense, we argue that the COVID-19 pandemic produces illness experience without illness, as the pandemic comprehensively impacts health and biography. This paper draws on 30 in-depth interviews with young adults living in Prince Edward Island (PEI), which were conducted as part of a larger project to understand how young adults navigate compliance with the COVID-19 pandemic. We then inductively analyzed the interviews with a constructivist grounded theory approach. Specifically, we demonstrate that young adults living in PEI during the COVID-19 pandemic experienced biographical disruptions throughout the pandemic despite not contracting the virus. First, we detail how some participants experience biographical acceleration, with the pandemic accelerating relationships, home buying, and career planning. Second, we demonstrate biographical stagnation, wherein participants report being unable to pursue major life milestones. Lastly, we describe biographical regression, wherein participants feel they are losing ground during the pandemic and are actively falling behind their peers. These findings provide the novel application of illness experience concepts to the context of the COVID-19 pandemic, contribute to work on illness experience and ambiguity, and extend Bury’s conceptualization of biographical disruption. In conclusion, we demonstrate that young adults experienced the biographical disruption expected from having COVID-19 without having an illness, highlighting the depth to which the pandemic affected young adults.

Keywords: illness experience, lived experience, biographical disruption, COVID-19, young adults

Procedia PDF Downloads 161
365 Determination of the CCR5Δ32 Frequency in Emiratis and Tunisians and Screening of the CCR5 Gene for Novel Alleles in Emiratis

Authors: Sara A. Al-Jaberi, Salma Ben-Salem, Meriam Messedi, Fatma Ayadi, Lihadh Al-Gazali, Bassam R. Ali

Abstract:

Background: The chemokine receptor components play crucial roles in the immune system and some of them serve as co-receptors for the HIV virus. Several studies have documented those variants in chemokine receptors are correlated with susceptibility and resistance to infection with HIV virus. For example, mutations in the chemokine receptor 5 gene (CCR5) resulting in loss-of-function (such as the homozygous CCR5Δ32) confer high degree of resistance to HIV infection. Heterozygotes for these variants exhibit slow progression to AIDS. The prevalence of CCR5 polymorphisms varies among ethnic and geographical groups. For example, the CCR5 Δ32 variant is present in 10–15% of north Europeans but is rarely encountered among Africans. This study aims to identify the prevalence of some CCR5 variants in two geographically distant Arab populations (namely Emiratis and Tunisians). Methodology: The prevalence of CCR5 gene variants including CCR5Δ32, FS299, C101X, A29S and C178R has been determined using PCR and direct DNA sequencing. A total of 403 unrelated healthy individuals (253 Emiratis and 150 Tunisians) were genotyped for the CCR5Δ32 variant using PCR amplification and gel electrophoresis. In addition, 200 Emiratis have been screened for other SNPs using Sanger DNA sequencing. Results: Among Emiratis, the allele frequency of the CCR5Δ32 variant has been found to be 0.002. In addition, two variants L55Q and A159 were found at a frequency of 0.002.Moreover, the prevalence of the CCR5Δ32 variant in Tunisians was estimated to be 0.013 which is relatively higher than its frequency in Emiratis but lower than Europeans. Conclusion: We conclude that the allele frequency of the most critical CCR5 polymorphism (Δ32) is extremely low among Emiratis compared to other Arabs and North Europeans. In addition, very low allele frequencies of other CCR5 polymorphisms have been detected among Emiratis.

Keywords: chemokine receptors, CCR5Δ32, CCR5 polymorphisms, Emiratis, Arab populations

Procedia PDF Downloads 378
364 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)

Authors: Dong Tran, Thanh Dac Van, Ly Le

Abstract:

Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.

Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution

Procedia PDF Downloads 164
363 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection

Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia

Abstract:

The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.

Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV

Procedia PDF Downloads 456
362 Characterization of Novel Bi-Directional Promoter from Begomovirus: A Breakthrough in Plant Genomics

Authors: Zainul A. Khan, Malik Z. Abdin, Jawaid A. Khan

Abstract:

Begomoviruses belonging to the family Geminiviridae, have single-stranded circular DNA genomes that are monopartite or bipartite. The large intergenic region (LIR) of the monopartite and common region (CR) of bipartite begomoviruses possess promoter activity in their genomes. In this study, we have characterized novel bidirectional promoters from Cotton leaf curl Burewala virus (CLCuBuV) genome using high-throughput software and analyzed with PlantCARE, PLACE, Cister and PlantPAN databases. The promoters (Rep and CP promoters) were assayed both in stable and transient expression systems in tobacco as well as cotton plants. Rep and CP-based promoters from the LIR sequence of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were tagged with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes to check the efficacy of the promoters. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed higher GUS expression driven by CLCuBuV Rep (complimentary sense) promoter as compared to conventional CaMV 35S promoter and CLCuBuV CP (virion sense) promoter, respectively. GUS activity in individual plant cells driven by CLCuBuV Rep, CLCuBuV CP, and CaMV 35S promoter were quantified through fluorometric GUS assay and reverse transcription quantitative real-time PCR (RT-qPCR). The expression level of GUS tagged with CLCuBuV Rep promoter in the transformed tobacco plants was obtained 2 to 4 fold higher than CaMV 35S promoter. When CLCuBuV CP promoter was used, lower expression level was monitored than that by CaMV 35S promoter. The expression of GFP-tagged with CLCuBuV promoters was also investigated through agroinfiltration. The CLCuBuV Rep promoters showed stronger consistent transient expression in the leaves of N. benthamiana, N. tabacum and Gossypium hirsutum plants when compared with CaMV 35S and CLCuBuV CP promoter.

Keywords: Begmovirus, bidirectional promoter, CaMV 35S promoter, GFP, GUS, qPCR

Procedia PDF Downloads 332
361 The New Insight about Interspecies Transmission of Iranian H9N2 Influenza Viruses from Avian to Human

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

Documented cases of human infection with H9N2 avian influenza viruses, first detected in 1999 in Hong Kong and China, indicate that these viruses can be directly transmitted from birds to humans. In this study, we characterized the mutation in the Hemagglutinin (HA) genes and proteins that correlates with a shift in affinity of the Hemagglutinin (HA) protein from the “avian” type sialic receptors to the “human” type in 10 Iranian isolates. We delineated the genomes and receptor binding profile of HA gene of some field isolates and established their phylogenetic relationship to the other Asian H9N2 sub lineages. A total of 1200 tissue samples collected from 40 farms located in various states of Iran during 2008 – 2010 as part of a program to monitor Avian Influenza Viruses (AIV) infection. To determine the genetic relationship of Iranian viruses, the Hemagglutinin (HA) genes from ten isolates were amplified and sequenced (by RT-PCR method). Nucleotide sequences (orf) of the (HA) genes were used for phylogenetic tree construction. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) in all ten Iranian isolates which indicates a preference to binding of α (2–6) sialic acid receptors, so these Iranian H9N2 viruses have the potential to infect human beings. These isolates showed high degree of homology with 2 human H9N2 isolates A/HK/1073/99, A/HK/1074/99. Phylogenetic analysis of showed that all the HA genes of the Iranian H9N2 viruses fall into a single group within a G1-like sublineage which had contributed as donor of six internal genes to H5N1 highly pathogenic avian influenza. The results of this study indicated that all Iranian viruses have the potential to emerge as highly pathogenic influenza virus, and considering the homology of these isolates with human H9N2 strains, it seems that the potential of these avian influenza isolates to infect human should not be overlooked.

Keywords: influenza virus, hemagglutinin, neuraminidase, Iran

Procedia PDF Downloads 449
360 MNH-886(Bt.): A Cotton Cultivar (G. Hirsutum L.) for Cultivation in Virus Infested Regions of Pakistan, Having High Seed Cotton Yield and Desirable Fibre Characteristics

Authors: Wajad Nazeer, Saghir Ahmad, Khalid Mahmood, Altaf Hussain, Abid Mahmood, Baoliang Zhou

Abstract:

MNH-886(Bt.) is a upland cotton cultivar (Gossypium hirsutum L.) developed through hybridization of three parents [(FH-207×MNH-770)×Bollgard-1] at Cotton Research Station Multan, Pakistan. It is resistant to CLCuVD with 16.25 % disease incidence (60 DAS, March sowing) whereas moderately susceptible to CLCuVD when planted in June with disease incidence 34 % (60 DAS). This disease reaction was lowest among 25 cotton advanced lines/varieties tested at hot spots of CLCuVD. Its performance was tested during 2009 to 2012 in various indigenous, provincial, and national varietal trials in comparison with the commercial variety IR-3701 and AA-802 & CIM-496. In PCCT trial during 2009-10; 2011-12, MNH-886 surpassed all the existing Bt. strains along with commercial varieties across the Punjab province with seed cotton yield production 2658 kg ha-1 and 2848 kg ha-1 which was 81.31 and 13% higher than checks, respectively. In National Coordinated Bt. Trial, MNH-886(Bt.) produced 3347 kg ha-1 seed cotton at CCRI, Multan; the hot spot of CLCuVD, in comparison to IR-3701 which gave 2556 kg ha-1. It possesses higher lint percentage (41.01%), along with the most desirable fibre traits (staple length 28.210mm, micronaire value 4.95 µg inch-1 and fibre strength 99.5 tppsi, and uniformity ratio 82.0%). The quantification of toxicity level of crystal protein was found positive for Cry1Ab/Ac protein with toxicity level 2.76µg g-1 and Mon 531 event was confirmed. Having tremendous yield potential, good fibre traits, and great tolerance to CLCuVD we can recommended this variety for cultivation in CLCuVD hotspots of Pakistan.

Keywords: cotton, cultivar, cotton leaf curl virus, CLCuVD hit districts

Procedia PDF Downloads 318
359 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 362
358 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines

Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond

Abstract:

Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".

Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine

Procedia PDF Downloads 242
357 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 357
356 No Histological and Biochemical Changes Following Administration of Tenofovir Nanoparticles: Animal Model Study

Authors: Aniekan Peter, ECS Naidu, Edidiong Akang, U. Offor, R. Kalhapure, A. A. Chuturgoon, T. Govender, O. O. Azu

Abstract:

Introduction: Nano-drugs are novel innovations in the management of human immunodeficiency virus (HIV) pandemic, especially resistant strains of the virus in their sanctuary sites: testis and the brain. There are safety concerns to be addressed to achieve the full potential of this new drug delivery system. Aim of study: Our study was designed to investigate toxicity profile of Tenofovir Nanoparticle (TDF-N) synthesized by University of Kwazulu-Natal (UKZN) Nano-team for prevention and treatment of HIV infection. Methodology: Ten adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit UKZN were used for the study. The animals were weighed and divided into two groups of 5 animal each. Control animals (A) were administered with normal saline. Therapeutic dose (4.3 mg/kg) of TDF-N was administered to group B. At the end of four weeks, animals were weighed and sacrificed. Liver and kidney were removed fixed in formal saline, processed and stained using H/E, PAS and MT stains for light microscopy. Serum was obtained for renal function test (RFT), liver function test (LFT) and full blood count (FBC) using appropriate analysers. Cellular measurements were done using ImageJ and Leica software 2.0. Data were analysed using graph pad 6, values < 0.05 were significant. Results: We reported no histological alterations in the liver, kidney, FBC, LFT and RFT between the TDF-N animals and saline control. There were no significant differences in weight, organo-somatic index and histological measurements in the treatment group when compared with saline control. Conclusion/recommendations: TDF-N is not toxic to the liver, kidney and blood cells in our study. More studies using human subjects is recommended.

Keywords: tenofovir nanoparticles, liver, kidney, blood cells

Procedia PDF Downloads 183
355 Public Perception and Willingness to Undergo Cosmetic Procedures during COVID-19 Pandemic: A Questionnaire-Based Study Applied to Asymptomatic Individuals

Authors: Ibrahim Alreshidi, Aseel Albrekeit, Ruaa Alharthi

Abstract:

Background: As a result of the spread of COVID-19 at the beginning of 2020, many governments, including Saudi Arabia, have suspended operations in many agencies. Most dermatologists have restricted their practice, including cosmetic procedures, to ensure social distancing. On the 7th of May 2020, Saudi authorities reduced the restriction of COVID-19 virus preventative measures, allowing clinics to start accepting patients following the ministry of health protocols. Objectives: Evaluation of the public's perception and willingness to undergo cosmetic procedures during COVID-19 outbreaks in Saudi Arabia. Materials and methods: A descriptive, cross-sectional, questionnaire-based study was carried out among the individuals who lack typical symptoms of COVID-19 infection in Saudi Arabia. A self-designed web-based questionnaire was developed; content face validity and a pilot study were done. The questionnaire was distributed electronically from the 8th of May until the 31st of May 2020. Results: A total of 656 individuals who lack typical symptoms of COVID-19 infection were included in this analysis. Only 10.5% of participants expressed their will to do cosmetic procedures during the COVID-19 pandemic. More than 90% of the participants believed that the COVID-19 pandemic was either somewhat serious (52.9%) or very serious (38.7%). The willingness to do cosmetic procedures during the COVID-19 pandemic remained unaltered when the price was discounted (p<0.001) and when infection control measures were ensured (p<0.001). Conclusion: The COVID-19 pandemic had a negative impact on the practice of cosmetic dermatology. Fear of transferring the infection to a beloved home member is the main reason to avoid these procedures. Generating well-structured safety guidelines to decrease the risk of this unusual virus transmission in dermatology practice and creating financial incentives may help increase the public willingness to do these cosmetic procedures during this pandemic.

Keywords: COVID-19 pandemic, cosmetic procedures, questionnaire, dermatology

Procedia PDF Downloads 182
354 Detection of JC Virus DNA and T-Ag Expression in a Subpopulation of Tunisian Colorectal Carcinomas

Authors: Wafa Toumi, Alessandro Ripalti, Luigi Ricciardiello, Dalila Gargouri, Jamel Kharrat, Abderraouf Cherif, Ahmed Bouhafa, Slim Jarboui, Mohamed Zili, Ridha Khelifa

Abstract:

Background & aims: Colorectal cancer (CRC) is one of the most common malignancies throughout the world. Several risk factors, both genetic and environmental, including viral infections, have been linked to colorectal carcinogenesis. A few studies report the detection of human polyomavirus JC (JCV) DNA and transformation antigen (T-Ag) in a fraction of the colorectal tumors studied and suggest an association of this virus with CRC. In order to investigate whether such an association of JCV with CRC will hold in a different epidemiological setting, we looked for the presence of JCV DNA and T-Ag expression in a group of Tunisian CRC patients. Methods: Fresh colorectal mucosa biopsies were obtained from 17 healthy volunteers and from both colorectal tumors and adjacent normal tissues of 47 CRC patients. DNA was extracted from fresh biopsies or from formalin-fixed, paraffin-embedded tissue sections using the Invitrogen Purelink Genomic DNA mini Kit. A simple PCR and a nested PCR were used to amplify a region of the T-Ag gene. The obtained PCR products revealed a 154 bp and a 98 bp bands, respectively. Specificity was confirmed by sequencing of the PCR products. T-Ag expression was determined by immunohistochemical staining using a mouse monoclonal antibody (clone PAb416) directed against SV40 T-Ag that cross reacts with JCV T-Ag. Results: JCV DNA was found in 12 (25%) and 22 (46%) of the CRC tumors by simple PCR and by nested PCR, respectively. All paired adjacent normal mucosa biopsies were negative for viral DNA. Sequencing of the DNA amplicons obtained confirmed the authenticity of T-Ag sequences. Immunohistochemical staining showed nuclear T-Ag expression in all 22 JCV DNA- positive samples and in 3 additional tumor samples which appeared DNA-negative by PCR. Conclusions: These results suggest an association of JCV with a subpopulation of Tunisian colorectal tumors.

Keywords: colorectal cancer, immunohistochemistry, Polyomavirus JC, PCR

Procedia PDF Downloads 363
353 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.

Keywords: dengue, lncRNA, NEAT1, transcriptome

Procedia PDF Downloads 310