Search results for: critical temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11681

Search results for: critical temperature

7841 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 124
7840 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 309
7839 Hardships Faced by Entrepreneurs in Marketing Projects for Acquiring Business Loans

Authors: Sudipto Sarkar

Abstract:

Capital is the primary fuel for starting and running a business. Since capital is crucial for every business, entrepreneurs must successfully acquire adequate capital for executing their projects. Sources for the necessary capital for entrepreneurs include their own personal funds from existing bank accounts, or lines of credit or loans from banks or financial institutions, or equity funding from investors. The most commonly selected source of capital is a bank loan. However, acquiring a loan by any entrepreneur requires adhering to strict guidelines, conditions and norms. Because not only they have to show evidence for viability of the project, but also the means to return the acquired loan. On the bank’s part, it requires that every loan officer performs a thorough credit appraisal of the prospective borrowers and makes decisions about whether or not to lend money, how much to lend, and what conditions should be attached to it. Moreover, these credit decisions in general were often based on biases, analytical techniques, or prior experience. A loan can either turn out to be good or poor, irrespective of what type of credit decisions were followed. However, based on prior experience, the loan officers seem to differentiate between a good and a bad loan by examining the borrower’s credit history, pattern of borrowing, volume of borrowing, frequency of borrowing, and reasons for borrowing. As per an article written by Maureen Wallenfang on postcrescent.com dated May 10, 2010, it is observed that borrowers with good credit, solid business plans and adequate collateral security were able to procure loans very easily in the Fox Valley region. Since loans are required to run businesses, and also with the propensity of loans to become bad, loan officers tend to be very critical and cautious before approving and disbursing the loans. The pressure to be critical and cautious, at least partly, is a result of increased scrutiny by the Securities and Exchange Commission. As per Wall Street Journal (Sidel & Eaglesham, March, 3 2011, online), the Securities and Exchange Commission scrutinized banks that have restructured troubled loans in order to make them appear healthier than they really are. Therefore, loan officers’ loan criteria are of immense importance for entrepreneurs and banks alike.

Keywords: entrepreneur, loans, marketing, banks

Procedia PDF Downloads 246
7838 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: A Case Study of Problem-Based Learning

Authors: Nirit Raichel, Dorit Alt

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies based on the constructivist approach for learning, arranged along Delors’ four theoretical ‘pillars’ of education: Learning to know, learning to do, learning to live together, and learning to be. This presentation will be limited to problem-based learning (PBL), as a strategy introduced in the second pillar. PBL leads not only to the acquisition of technical skills, but also allows the development of skills like problem analysis and solving, critical thinking, cooperation and teamwork, decision- making and self-regulation that can be transferred to other contexts. This educational strategy will be exemplified by a case study conducted in the pre-piloting stage of the project. The case describes a three-fold process implemented in a postgraduate course for in-service teachers, including: (1) learning about PBL (2) implementing PBL in the participants' classes, and (3) qualitatively assessing the contributions of PBL to students' outcomes. An example will be given regarding the ways by which PBL was applied and assessed in civic education for high-school students. Two 9th-grade classes have participated the study; both included several students with learning disability. PBL was applied only in one class whereas traditional instruction was used in the other. Results showed a robust contribution of PBL to students' affective and cognitive outcomes as reflected in their motivation to engage in learning activities, and to further explore the subject. However, students with learning disability were less favorable with this "active" and "annoying" environment. Implications of these findings for the LLAF project will be discussed.

Keywords: problem-based learning, higher education, pedagogical strategies

Procedia PDF Downloads 324
7837 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development

Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez

Abstract:

Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.

Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture

Procedia PDF Downloads 291
7836 Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Maria J. Alves, Sofia Cunha

Abstract:

Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature.

Keywords: human health, risk assessment, risk management, vector-borne diseases

Procedia PDF Downloads 394
7835 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90

Authors: Tamer M. Shehata

Abstract:

Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.

Keywords: mucoadhesive, microparticles, technology, diabetis

Procedia PDF Downloads 277
7834 EMPIRICAL ANALYSIS OF A GLOBAL IMPACT OF CONSUMER PRIVACY AND PROTECTION LAWS, ELECTRONIC TRANSACTION LAWS, PRIVACY AND DATA PROTECTION LAWS, AND CYBERCRIME LEGISLATION ON CYBER ATTACKS AND MALWARE TYPES: PROBLEMS AND PROSPECTS

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study aimed to probe how well cyber law operates worldwide, and then draw a logical conclusion on Nigeria’s experience using a deductive reasoning approach. With a purposive or structured sampling technique, seventy-eight countries (thirteen countries each from six continents of the world) were selected as sample size. The methods used for analysing the data include the Analysis of Variance (ANOVA), Pearson product-moment correlation and regression analysis, and multiple regression analysis methods respectively. At a two-tailed test of 0.05 confidence level, the results of findings established that about 23.74 (F calculated) which is > 2.23 (F critical) claimed the total cyber-attacks and malware types vary significantly. Also, at a two-tailed confidence level test of 0.05, 0.75 (F calculated) is < 1.7 (F critical), and the P-value = 0.73 to establish significantly that cybercrime legislation does not vary statistically. More so, the calculated value (tcalculated) = 7.305 is < table value (tcritical) = 12.05 at a two-tailed test of 0.05 to imply that electronic transactions law does not statistically impact the total number of cyber-attacks. The result also proved that Consumer Privacy and Protection law does not statistically impact the total number of cyber-attacks as the calculated value (tcalculated) = 6.21 < table value (tcritical) = 20.82 at a two-tailed test of 0.05. In addition, the calculated value (tcalculated) = 7.97 < table value (tcritical) = 14.76 at a two-tailed test of 0.05 implied that Privacy and Data Protection law does not statistically impact the total number of cyber-attacks worldwide. The calculated value (tcalculated) = 5.75 < table value (tcritical) = 12.65 at a two-tailed test of 0.05 to prove that cybercrime law does not statistically impact the total number of cyber-attacks. Finally, the calculated value (tcalculated) = 6.21 < table value (tcritical) = 20.82 at a two-tailed test of 0.05 concludes that combined multiple cyber laws do not significantly impact the total number of cyber-attacks worldwide. Recommendations were made based on the results of findings from the study.

Keywords: Cybercrime Legislation, Cyber Attacks, Consumer Privacy and Protection Law, Detection, Electronic Transaction Law, Prevention, Privacy and Data Protection Law, Prohibition, Prosecution

Procedia PDF Downloads 4
7833 An Alternative Rectangular Tunnels to Conventional Twin Circular Bored Tunnels in Weak Ground Conditions

Authors: Alex Atanaw Alebachew

Abstract:

The outcomes of a numerical research study conducted using the PLAXIS software to analyze surface settlements and moments generated in tunnel linings. The investigation focuses on both circular and rectangular twin tunnels. The study suggests that rectangular tunnels, although considered unconventional in modern tunneling practices, may be a viable option for shallow-depth tunneling in weak ground. The recommendation for engineers in the tunneling industry is to consider the use of rectangular tunnel boring machines (TBMs) based on the findings of this analysis. The research emphasizes the importance of evaluating various tunneling methods to optimize performance and address specific challenges in different ground conditions. These findings provide valuable insights into the behavior of rectangular tunnels compared to circular tunnels, emphasizing factors such as burial depth, relative positioning, tunnel size, and critical distance that influence surface settlements and bending moments. This research explores the feasibility of utilizing rectangular Tunnel Boring Machines (TBMs) as an alternative to conventional circular TBMs. The research findings indicate that rectangular tunnels exhibit slightly lower settlement than circular tunnels at shallow depths, especially in a narrower range directly above the twin tunnels. This difference could be attributed to maintaining a consistent tunnel-lining thickness across all depths. In deeper tunnel scenarios, circular tunnels experience less settlement compared to rectangular tunnels. Additionally, parallel rectangular tunnels settle more gradually than piggyback configurations, while piggyback tunnels show increased moments in the tunnel built second at the same level. Both settlement and moment coefficients increase with the diameter of twin tunnels, irrespective of their shape. The critical distance for both circular and rectangular tunnels is around 2.5 times the tunnel diameter, and distances closer than this result in a notable increase in moments. Rectangular tunnels spaced closer than 5 times the diameter led to higher settlement, and circular tunnels spaced closer than 2.5 to 3 times the diameter experience increased settlement as well.

Keywords: alternative, rectangular, tunnel, twin bored circular, weak ground

Procedia PDF Downloads 42
7832 A Critical Analysis on Traditional Bases of Indian Society

Authors: Sujit Kumar, Anita Surroch

Abstract:

Indian culture, religions, literature and philosophy has attracted attention of the scholars across the globe since time immemorial. They endeavoured to interpret these dimensions as per their comprehension of Indian Society. The present paper is an attempt to portray a critical analysis of traditional bases of Indian Society as articulated by the great Indians who immensely contributed by shaping, practicing and passing these sub-systems on to the successive generations. India was endowed with a class of intellectuals par excellence during ancient times that traversed lengths and breaths of the country, interacted with the people, understood their capabilities & limitations and needs and churned such knowledge with their fellow beings. It witnessed an era of emergence of Varnashrama, Purushartha, Dharma and Sanskara system. Mention of Varna system in the Purush hymn of Rigveda, Vrihadyaranyak Upnishda. Shantiparva of Mahabharata, the Gita and the interpretations offered by Lord Krishna, Bhrigua Rishi, Yudhishtra and philosophers of modern times give a glimpse of macro level division of labour in ancient Indian Society. The Ashrama system, the four stages of life as referred to in Upnishdas (Chandogaya, Jawali) Sutras (Vashisht Dharma Sutra, Gautma Dharma Sutra), Smritis (Manusmiriti) and four step ladder described by Ved Vyasa is a comprehensive scheme of harmonious development of physical, mental and spiritual capabilities of human beings during different stages of life. The Purushartha, the four broad duties (Dharama, Artha, Kama & Moksha) of human being, lays emphasis on discharging duties as per ones Varna, Ashrama and also keeping in view the time, space and circumstances. Sanskaras are methods and a process to purify mind, body and soul. Today, one gets refraction (not reflection as shades of beliefs, customs practices and interpretations of Varnashrama, Purushartha, Dharma and Sanskara in letter and spirit has undergone changes) of such traditional bases from the writings of Indologists and other scholars.

Keywords: intellectuals, Rigveda, Sanskaras, traditional

Procedia PDF Downloads 148
7831 A Near Ambient Pressure X-Ray Photoelectron Spectroscopy Study on Platinum Nanoparticles Supported on Zr-Based Metal Organic Frameworks

Authors: Reza Vakili, Xiaolei Fan, Alex Walton

Abstract:

The first near ambient pressure (NAP)-XPS study of CO oxidation over Pt nanoparticles (NPs) incorporated into Zr-based UiO (UiO for Universitetet i Oslo) MOFs was carried out. For this purpose, the MOF-based Catalysts were prepared by wetness impregnation (WI-PtNPs@UiO-67) and linker design (LD-PtNPs@UiO-67) methods along with PtNPs@ZrO₂ as the control catalyst. Firstly, the as-synthesized catalysts were reduced in situ prior to the operando XPS analysis. The existence of Pt(II) species was proved in UiO-67 by observing Pt 4f core level peaks at a high binding energy of 72.6 ± 0.1 eV. However, by heating the WI-PtNPs@UiO-67 catalyst in situ to 200 °C under vacuum, the higher BE components disappear, leaving only the metallic Pt 4f doublet, confirming the formation of Pt NPs. The complete reduction of LD-PtNPs@UiO-67 is achieved at 250 °C and 1 mbar H₂. To understand the chemical state of Pt NPs in UiO-67 during catalytic turnover, we analyzed the Pt 4f region using operando NAP-XPS in the temperature-programmed measurements (100-260 °C) with reference to PtNPs@ZrO₂ catalyst. CO conversion during NAP-XPS experiments with the stoichiometric mixture shows that LD-PtNPs@UiO-67 has a better CO turnover frequency (TOF, 0.066 s⁻¹ at 260 °C) than the other two (ca. 0.055 s⁻¹). Pt 4f peaks only show one chemical species present at all temperatures, but the core level BE shifts change as a function of reaction temperature, i.e., Pt 4f peak from 71.8 eV at T < 200 °C to 71.2 eV at T > 200 °C. As this higher BE state of 71.8 eV was not observed after in situ reductions of the catalysts and only once the CO/O₂ mixture was introduced, we attribute it to the surface saturation of Pt NPs with adsorbed CO. In general, the quantitative analysis of Pt 4f data from the operando NAP-XPS experiments shows that the surface chemistry of the Pt active phase in the two PtNPs@UiO-67 catalysts is the same, comparable to that of PtNPs@ZrO₂. The observed difference in the catalytic activity can be attributed to the particle sizes of Pt NPs, as well as the dispersion of active phase in the support, which are different in the three catalysts.

Keywords: CO oxidation, heterogeneous catalysis, MOFs, Metal Organic Frameworks, NAP-XPS, Near Ambient Pressure X-ray Photoelectron Spectroscopy

Procedia PDF Downloads 122
7830 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 270
7829 A Comparative Analysis of Innovation Maturity Models: Towards the Development of a Technology Management Maturity Model

Authors: Nikolett Deutsch, Éva Pintér, Péter Bagó, Miklós Hetényi

Abstract:

Strategic technology management has emerged and evolved parallelly with strategic management paradigms. It focuses on the opportunity for organizations operating mainly in technology-intensive industries to explore and exploit technological capabilities upon which competitive advantage can be obtained. As strategic technology management involves multifunction within an organization, requires broad and diversified knowledge, and must be developed and implemented with business objectives to enable a firm’s profitability and growth, excellence in strategic technology management provides unique opportunities for organizations in terms of building a successful future. Accordingly, a framework supporting the evaluation of the technological readiness level of management can significantly contribute to developing organizational competitiveness through a better understanding of strategic-level capabilities and deficiencies in operations. In the last decade, several innovation maturity assessment models have appeared and become designated management tools that can serve as references for future practical approaches expected to be used by corporate leaders, strategists, and technology managers to understand and manage technological capabilities and capacities. The aim of this paper is to provide a comprehensive review of the state-of-the-art innovation maturity frameworks, to investigate the critical lessons learned from their application, to identify the similarities and differences among the models, and identify the main aspects and elements valid for the field and critical functions of technology management. To this end, a systematic literature review was carried out considering the relevant papers and articles published in highly ranked international journals around the 27 most widely known innovation maturity models from four relevant digital sources. Key findings suggest that despite the diversity of the given models, there is still room for improvement regarding the common understanding of innovation typologies, the full coverage of innovation capabilities, and the generalist approach to the validation and practical applicability of the structure and content of the models. Furthermore, the paper proposes an initial structure by considering the maturity assessment of the technological capacities and capabilities - i.e., technology identification, technology selection, technology acquisition, technology exploitation, and technology protection - covered by strategic technology management.

Keywords: innovation capabilities, innovation maturity models, technology audit, technology management, technology management maturity models

Procedia PDF Downloads 44
7828 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 145
7827 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods

Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi

Abstract:

Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.

Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS

Procedia PDF Downloads 116
7826 Association of Post-Traumatic Stress Disorder with Work Performance amongst Emergency Medical Service Personnel, Karachi, Pakistan

Authors: Salima Kerai, Muhammad Islam, Uzma Khan, Nargis Asad, Junaid Razzak, Omrana Pasha

Abstract:

Background: Pre-hospital care providers are exposed to various kinds of stressors. Their daily exposure to diverse critical and traumatic incidents can lead to stress reactions like Post-Traumatic Stress Disorder (PTSD). Consequences of PTSD in terms of work loss can be catastrophic because of its compound effect on families, which affect them economically, socially and emotionally. Therefore, it is critical to assess the association between PTSD and Work performance in Emergency Medical Service (EMS) if exist any. Methods: This prospective observational study was carried out at AMAN EMS in Karachi, Pakistan. EMS personnel were screened for potential PTSD using impact of event scale-revised (IES-R). Work performance was assessed on basis of five variables; number of late arrivals to work, number of days absent, number of days sick, adherence to protocol and patient satisfaction survey over the period of 3 months. In order to model outcomes like number of late arrivals to work, days absent and days late; negative binomial regression was used whereas logistic regression was applied for adherence to protocol and linear for patient satisfaction scores. Results: Out of 536 EMS personnel, 525 were found to be eligible, of them 518 consented. However data on 507 were included because 7 left the job during study period. The mean score of PTSD was found to be 24.0 ± 12.2. However, weak and insignificant association was found between PTSD and work performance measures: number of late arrivals (RRadj 0.99; 95% CI 0.98-1.00), days absent (RRadj 0.98; 95% CI 0.96-0.99), days sick (Rradj 0.99; 95% CI 0.98 to 1.00), adherence to protocol (ORadj 1.01: 95% CI 0.99 to 1.04) and patient satisfaction (0.001% score; 95% CI -0.03% to 0.03%). Conclusion: No association was found between PTSD and Work performance in the selected EMS population in Karachi Pakistan. Further studies are needed to explore the phenomenon of resiliency in these populations. Moreover, qualitative work is required to explore perceptions and feelings like willingness to go to work, readiness to carry out job responsibilities.

Keywords: trauma, emergency medical service, stress, pakistan

Procedia PDF Downloads 320
7825 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 454
7824 Adaptive Conjoint Analysis of Professionals’ Job Preferences

Authors: N. Scheidegger, A. Mueller

Abstract:

Job preferences are a well-developed research field. Many studies analyze the preferences using simple ratings with a sample of university graduates. The current study analyzes the preferences with a mixed method approach of a qualitative preliminary study and adaptive conjoint-analysis. Preconditions of accepting job offers are clarified for professionals in the industrial sector. It could be shown that, e.g. wages above the average are critical and that career opportunities must be seen broader than merely a focus on formal personnel development programs. The results suggest that, to be effective with their recruitment efforts, employers must take into account key desirable job attributes of their target group.

Keywords: conjoint analysis, employer attractiveness, job preferences, personnel marketing

Procedia PDF Downloads 186
7823 Improving the Competency of Undergraduate Nursing Students in Addressing a Timely Public Health Issue

Authors: Tsu-Yin Wu, Jenni Hoffman, Lydia McMurrows, Sarah Lally

Abstract:

Recent events of the Flint Water Crisis and elevated lead levels in Detroit public school water have highlighted a specific public health disparity and shown the need for better education of healthcare providers on lead education. Identifying children and pregnant women with a high risk for lead poisoning and ensuring lead testing is completed is critical. The purpose of this study is to explore the impact of an educational intervention on knowledge and confidence levels among nursing students enrolled in the prelicensure Bachelor of Science in Nursing (BSN) and Registered Nurse to BSN program (R2B). The study used both quantitative and qualitative research methods to assess the impact of multi-modal pedagogy on knowledge and confidence of lead screening and prevention among prelicensure and R2B nursing students. The students received lead poisoning and prevention content in addition to completing an e-learning module developed by the Pediatric Environmental Health Specialty Units. A total of 115 students completed the pre-and post-test instrument that consisted of demographic, lead knowledge, and confidence items. Despite the increase of total knowledge, three dimensions of lead poisoning, and confidence from pre- to post-test scores for both groups, there was no statistical significance on the increase between prelicensure and R2B students. Thematic analysis of qualitative data showed five themes from participants' learning experiences: lead exposure, signs and symptoms of lead poisoning, screening and diagnosis, prevention, and policy and statewide issues. The study is limited by a small sample and participants recalling some correct answers from the pretest, thus, scoring higher on the post-test. The results contribute to the minimally existent literature examining a critical public health concern regarding lead health exposure and prevention education of nursing students. Incorporating such content area into the nursing curriculum is essential in ensuring that such public health disparities are mitigated.

Keywords: lead poisoning, emerging public health issue, community health, nursing edducation

Procedia PDF Downloads 180
7822 Decoloriation of Rhodamine-B Dye by Pseudomonas putida on Activated Carbon

Authors: U. K. Ghosh, A. Ullhyan

Abstract:

Activated carbon prepared from mustard stalk was applied to decolorize Rhodamine-B dye bearing synthetic wastewater by simple adsorption and simultaneous adsorption and biodegradation (SAB) using Pseudomonas putida MTCC 1194. Results showed that percentage of Rhodamine-B dye removal was 82% for adsorption and 99.3% for SAB at pH 6.5, adsorbent dose 10 g/L and temperature 32ºC.

Keywords: activated carbon, mustard stalk, Rhodamine-B, adsorption, SAB, Pseudomonas putida

Procedia PDF Downloads 336
7821 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide

Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu

Abstract:

This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.

Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide

Procedia PDF Downloads 222
7820 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ

Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi

Abstract:

Superconductor is a promising material for future applications especially for energy saving because of their advantages properties such as zero electrical resistivity when they are cooled down to sufficiently low temperatures. However, the mechanism describing the role of physical properties in superconductor is far from being understood clearly, so that the application of this material for wider benefit in various industries is very limited. Most of superconductors are cuprate compounds, which has CuO2 as a conducting plane in their crystal structures. The study of physical properties through the partially substitution of impurity for Cu in superconducting cuprates has been one of great interests in relation to the mechanism of superconductivity. Different behaviors between the substitution of nonmagnetic impurity and magnetic impurity for Cu are observed. For examples, the superconductivity and Cu-spin fluctuations in the electron-doped system are suppressed through the substitution of magnetic Ni for Cu more markedly than through the substitution of nonmagnetic Zn for Cu, which is contrary to the result in the hole-doped system. Here, we reported the effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0.01, 0.02, and 0.05, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y. Some reasons for these results will be discussed.

Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state

Procedia PDF Downloads 336
7819 Temporal Profile of T2 MRI and 1H-MRS in the MDX Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K.Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle wasting disease for which there are currently no treatment that effectively prevents the muscle necrosis and progressive muscle loss. DMD is among the most common of inherited diseases affecting around 1/3500 live male births. MDX (X-linked muscular dystrophy) mice only partially encapsulate the disease in humans and display weakness in muscles, muscle damage and edema during a period deemed the “critical period” when these mice go through cycles of muscular degeneration and regeneration. Although the MDX mutant mouse model has been extensively studied as a model for DMD, to-date an extensive temporal, non-invasive imaging profile that utilizes magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy (1H-MRS) has not been performed.. In addition, longitudinal imaging characterization has not coincided with attempts to exacerbate the progressive muscle damage by exercise. In this study we employed an 11.7 T small animal MRI in order to characterize the MRI and MRS profile of MDX mice longitudinally during a 12 month period during which MDX mice were subjected to exercise. Male mutant MDX mice (n=15) and male wild-type mice (n=15) were subjected to a chronic exercise regime of treadmill walking (30 min/ session) bi-weekly over the whole 12 month follow-up period. Mouse gastrocnemius and tibialis anterior muscles were profiled with baseline T2-MRI and 1H-MRS at 6 weeks of age. Imaging and spectroscopy was repeated again at 3 months, 6 months, 9 months and 12 months of age. Plasma creatine kinase (CK) level measurements were coincided with time-points for T2-MRI and 1H-MRS, but also after the “critical period” at 10 weeks of age. The results obtained from this study indicate that chronic exercise extends dystrophic phenotype of MDX mice as evidenced by T2-MRI and1H-MRS. T2-MRI revealed extent and location of the muscle damage in gastrocnemius and tibialis anterior muscles as hyperintensities (lesions and edema) in exercised MDX mice over follow-up period.. The magnitude of the muscle damage remained stable over time in exercised mice. No evident fat infiltration or cumulation to the muscle tissues was seen at any time-point in exercised MDX mice. Creatine, choline and taurine levels evaluated by 1H-MRS from the same muscles were found significantly decreased in each time-point, Extramyocellular (EMCL) and intramyocellular lipids (IMCL) did not change in exercised mice supporting the findings from anatomical T2-MRI scans for fat content. Creatine kinase levels were found to be significantly higher in exercised MDX mice during the follow-up period and importantly CK levels remained stable over the whole follow-up period. Taken together, we have described here longitudinal prophile for muscle damage and muscle metabolic changes in MDX mice subjected to chronic exercised. The extent of the muscle damage by T2-MRI was found to be stable through the follow-up period in muscles examined. In addition, metabolic profile, especially creatine, choline and taurine levels in muscles, was found to be sustained between time-points. The anatomical muscle damage evaluated by T2-MRI was supported by plasma CK levels which remained stable over the follow-up period. These findings show that non-invasive imaging and spectroscopy can be used effectively to evaluate chronic muscle pathology. These techniques can be also used to evaluate the effect of various manipulations, like here exercise, on the phenotype of the mice. Many of the findings we present here are translatable to clinical disease, such as decreased creatine, choline and taurine levels in muscles. Imaging by T2-MRI and 1H-MRS also revealed that fat content or extramyocellar and intramyocellular lipids, respectively, are not changed in MDX mice, which is in contrast to clinical manifestation of the Duchenne’s muscle dystrophy. Findings show that non-invasive imaging can be used to characterize the phenotype of a MDX model and its translatability to clinical disease, and to study events that have traditionally been not examined, like here rigorous exercise related sustained muscle damage after the “critical period”. The ability for this model to display sustained damage beyond the spontaneous “critical period“ and in turn to study drug effects on this extended phenotype will increase the value of the MDX mouse model as a tool to study therapies and treatments aimed at DMD and associated diseases.

Keywords: 1H-MRS, MRI, muscular dystrophy, mouse model

Procedia PDF Downloads 345
7818 Autonomy Supportive Coaching to Achieve Health Literacy

Authors: E. Knisel, H. Rupprich, A. Heissel

Abstract:

Health Literacy is defined as the degree to which people have the capacity to obtain and understand information to make health decisions. Illustrated are three levels of health literacy: (1) Functional literacy refers to the transmission of information about e. g. physical activity and nutrition; (2) interactive literacy implies the development of personal and social skills to adopt health-related behaviour and (3) critical health literacy indicates advanced cognitive skills connected with personal empowerment to critically analyse health information, to define self-determined goals and taking action in various situations accordingly. The achievement of the third level refers to self-determination and autonomy which should be outcomes of exercise programs for overweight children as health-related behaviour change will occur and persist if it is autonomously motivated. Method: We adopted a quasi-experimental design with group (autonomy supportive coaching, control) and session (pre-test, intervention, post-test, and follow-up-test). Overweight and obese children and adolescents at the age of 8-14 years (N=40) received a 6-month (20 sessions) exercise program with autonomy supportive coaching implemented by the coaches and sandwiched between pre-test and post-test. All participants (N=92) completed the German version of the Basic Needs Satisfaction Scale Sport and Exercise. Additionally, we assessed the engagement in the exercise program by the MVPA (Moderate-to-Vigorous Physical Activity) and by the adherence and drop-out-rate. Results: Participants in the intervention group perceived their autonomy as moderate in the post-test and the follow-up-test. However, the psychological intervention failed to develop a high autonomy, as both groups show moderate perceived autonomy from the pre-test to the post-test. Participants in the intervention group were higher engaged in MVPA in the exercise program and they attend the program more regularly. Discussion: Young overweight and obese children and adolescents can acquire autonomy using autonomy supporting coaching. However, research identifying the extent they achieve critical health literacy is required to implement an autonomy-supportive coaching style into exercise programs for this target group.

Keywords: autonomy support, coaching, health literacy, health promotion

Procedia PDF Downloads 471
7817 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 228
7816 Revealing the Urban Heat Island: Investigating its Spatial and Temporal Changes and Relationship with Air Quality

Authors: Aneesh Mathew, Arunab K. S., Atul Kumar Sharma

Abstract:

The uncontrolled rise in population has led to unplanned, swift, and unsustainable urban expansion, causing detrimental environmental impacts on both local and global ecosystems. This research delves into a comprehensive examination of the Urban Heat Island (UHI) phenomenon in Bengaluru and Hyderabad, India. It centers on the spatial and temporal distribution of UHI and its correlation with air pollutants. Conducted across summer and winter seasons from 2001 to 2021 in Bangalore and Hyderabad, this study discovered that UHI intensity varies seasonally, peaking in summer and decreasing in winter. The annual maximum UHI intensities range between 4.65 °C to 6.69 °C in Bengaluru and 5.74 °C to 6.82 °C in Hyderabad. Bengaluru particularly experiences notable fluctuations in average UHI intensity. Introducing the Urban Thermal Field Variance Index (UTFVI), the study indicates a consistent strong UHI effect in both cities, significantly impacting living conditions. Moreover, hotspot analysis demonstrates a rising trend in UHI-affected areas over the years in Bengaluru and Hyderabad. This research underscores the connection between air pollutant concentrations and land surface temperature (LST), highlighting the necessity of comprehending UHI dynamics for urban environmental management and public health. It contributes to a deeper understanding of UHI patterns in swiftly urbanizing areas, providing insights into the intricate relationship between urbanization, climate, and air quality. These findings serve as crucial guidance for policymakers, urban planners, and researchers, facilitating the development of innovative, sustainable strategies to mitigate the adverse impacts of uncontrolled expansion while promoting the well-being of local communities and the global environment.

Keywords: urban heat island effect, land surface temperature, air pollution, urban thermal field variance index

Procedia PDF Downloads 50
7815 Analyzing Students’ Preferences for Academic Advising: Cases of Two Institutions in Greater Tokyo in Japan

Authors: Megumi Yamasaki, Eiko Shimizu

Abstract:

The term academic advisor system first appeared in 2012 in Japan. After ten years, it is not yet functioning. One of Japanese college students’ characteristics is that they choose an institution but may not be interested in a major and want to earn a degree for a career. When the university encourages students to develop competencies as well as students to set personal goals during college life, it is critical to support students develop self-directed attitudes and advocacy skills. This paper will analyze the students’ current stage and how academic advising supports their development.

Keywords: academic advising, student development, self-directed, self-advocacy

Procedia PDF Downloads 84
7814 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water

Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer

Abstract:

Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.

Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software

Procedia PDF Downloads 61
7813 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment

Authors: Dipankar Deka

Abstract:

Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.

Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies

Procedia PDF Downloads 65
7812 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine

Authors: Nadia Allouache

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 57