Search results for: gravitational search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5313

Search results for: gravitational search algorithm

1503 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 228
1502 The Psychological Impact of War Trauma on Refugees

Authors: Anastasia Papachristou, Anastasia Ntikoudi, Vasileios Saridakis

Abstract:

The safety and health care needs of refugees have become an increasingly important issue all over the world especially during last few decades. Wars are the primary reason for refugees to leave their countries. Moreover, refugees are frequently exposed to a variety of stressors such as socioeconomic disadvantages, poverty, changes in family structure and functioning, losing social support, difficulty to access education, living in very crowded places, experiencing racism and isolation. This systematic review included research studies published between 2007-2017 from the search databases Medline, Scopus, Cinahl and PubMed, with keywords 'war survivors', 'war trauma', 'psychiatric disorders', 'refugees'. In order to meet the purpose of the systematic review, further research for complementary studies was conducted into the literature references of the research articles included in this study that would meet the criteria. Overall, 14 studies were reviewed and evaluated. The majority of them demonstrated that the most common psychiatric disorders observed among war refugees are post-traumatic stress disorder (PTSD), depression, anxiety and multiple somatic complaints. Moreover, significant relationship was shown between the number of traumatic events experienced by the refugees and sociodemographic features such as gender, age and previous family history of any psychological disorder. War violence is highly traumatic, causing multiple, long-term negative outcomes such as the aforementioned psychiatric disorders. The number of the studies reviewed in this systematic review is not representative of the problem and its significance. The need for care of the survivors and their families is vital. Further research is necessary in order to clarify the role of predictive factors in the development and maintenance of post-traumatic stress and the rest psychiatric disorders following war trauma. In conclusion, it is necessary to have large multicenter studies in the future in order to be able to draw reliable conclusions about the effects of war.

Keywords: psychiatric disorders, refugees, war survivors, war trauma

Procedia PDF Downloads 201
1501 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas

Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy

Abstract:

The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.

Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator

Procedia PDF Downloads 199
1500 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 116
1499 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
1498 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation

Authors: Mounia El Hafyani, Khalid El Himdi

Abstract:

Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.

Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations

Procedia PDF Downloads 127
1497 Determination of Stresses in Vlasov Beam Sections

Authors: Semih Erdogan

Abstract:

In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.

Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties

Procedia PDF Downloads 64
1496 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions

Procedia PDF Downloads 275
1495 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques

Authors: Jonathan J. Burson

Abstract:

With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.

Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis

Procedia PDF Downloads 97
1494 Identification of Analogues to EGCG for the Inhibition of HPV E7: A Fundamental Insights through Structural Dynamics Study

Authors: Murali Aarthy, Sanjeev Kumar Singh

Abstract:

High risk human papillomaviruses are highly associated with the carcinoma of the cervix and the other genital tumors. Cervical cancer develops through the multistep process in which increasingly severe premalignant dysplastic lesions called cervical intraepithelial neoplastic progress to invasive cancer. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers drives the cells into S-phase creating an environment conducive for viral genome replication and cell proliferation. The replication of the virus occurs in the terminally differentiating epithelium and requires the activation of cellular DNA replication proteins. To date, no suitable drug molecule is available to treat HPV infection whereas identification of potential drug targets and development of novel anti-HPV chemotherapies with unique mode of actions are expected. Hence, our present study aimed to identify the potential inhibitors analogous to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems. A 3D similarity search on the natural small molecule library from natural product database using EGCG identified 11 potential hits based on their similarity score. The structure based docking strategies were implemented in the potential hits and the key interacting residues of protein with compounds were identified through simulation studies and binding free energy calculations. The conformational changes between the apoprotein and the complex were analyzed with the simulation and the results demonstrated that the dynamical and structural effects observed in the protein were induced by the compounds and indicated the dominance to the oncoprotein. Overall, our study provides the basis for the structural insights of the identified potential hits and EGCG and hence, the analogous compounds identified can be potent inhibitors against the HPV 16 E7 oncoprotein.

Keywords: EGCG, oncoprotein, molecular dynamics simulation, analogues

Procedia PDF Downloads 128
1493 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 163
1492 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 476
1491 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 91
1490 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet

Procedia PDF Downloads 371
1489 Neural Network Approach to Classifying Truck Traffic

Authors: Ren Moses

Abstract:

The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.

Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions

Procedia PDF Downloads 312
1488 The Efficacy of Methylphenidate vs Atomoxetine in Treating Attention Deficit/Hyperactivity Disorder in Child and Adolescent

Authors: Gadia Duhita, Noorhana, Tjhin Wiguna

Abstract:

Background: ADHD is the most common behavioural disorder in Indonesia. A stimulant, specifically methylphenidate, has been the first drug of choice for an ADHD treatment more than half a century. During the last decade, non-stimulant therapy (atomoxetine) for ADHD treatment has been developing. Growing evidence of its efficacy and the difference in its side effects profile to stimulant therapy have made methylphenidate’s position as a first line therapy for ADHD in need of re-evaluation. Both methylphenidate and atomoxetine have proven themselves against placebos in reducing core symptoms of ADHD. More recent studies directly compare the efficacy of methylphenidate and atomoxetine. Objective: The objective of this paper is to find out if either methylphenidate or atomoxetine is superior to another. This paper will assess the validity, importance, and applicability of current available evidence which compare the effectivity, efficacy, and safety of methylphenidate to atomoxetine for treatment in children and adolescents with ADHD. Method: The articles were searched for through the PubMed and Cochrane databases with “attention deficit/hyperactivity disorder OR adhd”, “methylphenidate”, and “atomoxetine” as the search keywords. Two articles which were relevant and eligible were chosen by using inclusion and exclusion criterias to be critically appraised. Result: The study by Hazel et al. showed that the efficacy of methylphenidate and atomoxetine are comparable for treatment in child and adolescent ADHD. The result shows 53.6% (95% CI 48.5%-58.4%) of the patient responded to the treatment by atomoxetine and 54.4% (95% CI 47.6%-61.1%) patients responded to methylphenidate, with the difference in proportion of–0.9% (95% CI –9.2%-7.5%). The other study by Hanwella et al. also showed that the efficacy of atomoxetine was not inferior to metilphenidate (SMD = 0.09, 95% CI –0.08-0.26) (Z = 1.06, p = 0.29). However, the sub-group analysis showed that OROS methylphenidate is more effective compared to atomoxetine (SMD = 0.32, 95% CI 0.12-0.53) (Z = 3.05, p < 0.02). Conclusion: The efficacy of methylphenidate and atomoxetine in reducing symptoms of ADHD is comparable. None is proven inferior to another. The choice of pharmacological tratment children and adolescents with ADHD should be made based on contraindication and the side effects profile of each drug.

Keywords: attention deficit/hyperactivity disorder, ADHD, atomoxetine, methylphenidate

Procedia PDF Downloads 479
1487 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 333
1486 Effects of Health Information Websites on Health Care Facility Visits

Authors: M. Aljumaan, F. Alkhadra, A. Aldajani, M. Alarfaj, A. Alawami, Y. Aljamaan

Abstract:

Introduction: The internet has been widely available with 18 million users in Saudi Arabia alone. It was shown that 58% of Saudis are using the internet as a source of health-related information which may contribute to overcrowding of the Emergency Room (ER). Not many studies have been conducted to show the effect of online searching for health related information (HRI) and its role in influencing internet users to visit various health care facilities. So the main objective is to determine a correlation between HRI website use and health care facility visits in Saudi Arabia. Methodology: By conducting a cross sectional study and distributing a questionnaire, a total number of 1095 people were included in the study. Demographic data was collected as well as questions including the use of HRI websites, type of websites used, the reason behind the internet search, which health care facility it lead them to visit and whether seeking health information on the internet influenced their attitude towards visiting health care facilities. The survey was distributed using an internet survey applications. The data was then put on an excel sheet and analyzed with the help of a biostatician for making a correlation. Results: We found 91.4% of our population have used the internet for medical information using mainly General medical websites (77.8%), Forums (34.2%), Social Media (21.6%), and government websites (21.6%). We also found that 66.9% have used the internet for medical information to diagnose and treat their medical conditions on their own while 34.7% did so due to the inability to have a close referral and 29.5% due to their lack of time. Searching for health related information online caused 62.5% of people to visit health care facilities. Outpatient clinics were most visited at 77.9% followed by the ER (27.9%). The remaining 37.5% do not visit because using HRI websites reassure them of their condition. Conclusion: In conclusion, there may be a correlation between health information website use and health care facility visits. However, to avoid potentially inaccurate medical information, we believe doctors have an important role in educating their patients and the public on where to obtain the correct information & advertise the sites that are regulated by health care officials.

Keywords: ER visits, health related information, internet, medical websites

Procedia PDF Downloads 192
1485 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 58
1484 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 470
1483 Evaluation of Nuts as a Source of Selenium in Diet

Authors: Renata Markiewicz-Żukowska, Patryk Nowakowski, Sylwia K. Naliwajko, Jakub M. Bołtryk, Katarzyna Socha, Anna Puścion-Jakubik, Jolanta Soroczyńska, Maria H. Borawska

Abstract:

Selenium (Se) is an essential element for human health. As an integral part of glutathione peroxidase, it has antioxidant, anti-inflammatory and anticancer activities. Unfortunately, Se dietary intake is often insufficient, especially in regions where the soil is low in Se. Therefore, in search for good sources of Se, the content of this element in food products should be monitored. Food product can be considered as a source of Se when its standard portion covers above 15% of recommended daily allowance. In the case of nuts, 42g is recognized as the standard portion. The aim of this study was to determine the Se content in nuts and to answer the question of whether the studied nuts can be considered as a source of Se in the diet. The material for the study consisted of 10 types of nuts (12 samples of each one): almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts. The nuts were mineralized using microwave technique (Berghof, Germany). The content of Se was determined by atomic absorption spectrometry method with electrothermal atomization in a graphite tube with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. Statistical significance was determined at p < 0.05 level. The highest content of Se was found in Brazil nuts (4566.21 ± 3393.9 µg/kg) and the lowest in almonds (36.07 ± 18.8 µg/kg). A standard portion (42g) of almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts covers the recommended daily allowance for Se respectively in: 2, 192, 28, 2, 16, 7, 4, 3, 12, 6%. Brazil nuts, cashews and macadamia nuts can be considered as a good source of Se in diet.

Keywords: atomic absorption spectrometry, diet, nuts, selenium

Procedia PDF Downloads 185
1482 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 236
1481 A Systematic Review of Patient-Reported Outcomes and Return to Work after Surgical vs. Non-surgical Midshaft Humerus Fracture

Authors: Jamal Alasiri, Naif Hakeem, Saoud Almaslmani

Abstract:

Background: Patients with humeral shaft fractures have two different treatment options. Surgical therapy has lesser risks of non-union, mal-union, and re-intervention than non-surgical therapy. These positive clinical outcomes of the surgical approach make it a preferable treatment option despite the risks of radial nerve palsy and additional surgery-related risk. We aimed to evaluate patients’ outcomes and return to work after surgical vs. non-surgical management of shaft humeral fracture. Methods: We used databases, including PubMed, Medline, and Cochrane Register of Controlled Trials, from 2010 to January 2022 to search for potential randomised controlled trials (RCTs) and cohort studies comparing the patients’ related outcome measures and return to work between surgical and non-surgical management of humerus fracture. Results: After carefully evaluating 1352 articles, we included three RCTs (232 patients) and one cohort study (39 patients). The surgical intervention used plate/nail fixation, while the non-surgical intervention used a splint or brace procedure to manage shaft humeral fracture. The pooled DASH effects of all three RCTs at six (M.D: -7.5 [-13.20, -1.89], P: 0.009) I2:44%) and 12 months (M.D: -1.32 [-3.82, 1.17], p:0.29, I2: 0%) were higher in patients treated surgically than in non-surgical procedures. The pooled constant Murley score at six (M.D: 7.945[2.77,13.10], P: 0.003) I2: 0%) and 12 months (M.D: 1.78 [-1.52, 5.09], P: 0.29, I2: 0%) were higher in patients who received non-surgical than surgical therapy. However, pooled analysis for patients returning to work for both groups remained inconclusive. Conclusion: Altogether, we found no significant evidence supporting the clinical benefits of surgical over non-surgical therapy. Thus, the non-surgical approach remains the preferred therapeutic choice for managing shaft humeral fractures due to its lesser side effects.

Keywords: shaft humeral fracture, surgical treatment, Patient-related outcomes, return to work, DASH

Procedia PDF Downloads 99
1480 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 411
1479 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 252
1478 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Wei Feilong

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment

Procedia PDF Downloads 266
1477 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 484
1476 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 324
1475 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 515
1474 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 134