Search results for: dynamic thresholding classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6086

Search results for: dynamic thresholding classification

2276 A Nanosensor System Based on Disuccinimydyl – CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Authors: Rachel F. Ajayi, Unathi Sidwaba, Usisipho Feleni, Samantha F. Douman, Ezo Nxusani, Lindsay Wilson, Candice Rassie, Oluwakemi Tovide, Priscilla G.L. Baker, Sibulelo L. Vilakazi, Robert Tshikhudo, Emmanuel I. Iwuoha

Abstract:

Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2 µM to 16 µM revealing a limit of detection of 0.044 µM and a sensitivity of 1.38 µA/µM. The Michaelis-Menten parameters; KM, KMapp and IMAX were also calculated and found to be 6.0 µM, 1.41 µM and 1.51 µA respectively indicating a nanobiosensor suitable for use in serum.

Keywords: tuberculosis, cytochrome P450-2E1, disuccinimidyl octanedioate, pyrazinamide

Procedia PDF Downloads 414
2275 Self-Assembled Nano Aggregates Based On Polyaspartamide Graft Copolymers for pH-Controlled Release of Doxorubicin

Authors: Van Tran Thi Thuy, Cheol Won Lim, Dukjoon Kim

Abstract:

A series of biodegradable copolymers based on polyaspartamide (PASPAM) were synthesized by grafting hydrophilic O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) (MPEG), hydrophobic cholic acid (CA), and pH-sensitive hydrazine (Hyd) segments on a PASPAM backbone. The hydrazine group was effectively cleaved to release doxorubicin (DOX) conjugated on PASPAM in an acidic environment. The chemical structure of the polymer and the degree of substitution of each graft segment were analyzed using FT-IR and 1H-NMR spectroscopy. The size of the MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates was examined by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the self - aggregates increased from 125 to 200 nm at pH 7.4, as the degree of substitution of CA increased from 10 to 20 %. The release kinetics of DOX was strongly affected by the pH of the releasing medium. While less than 30% of the DOX-loaded was released in about 30 h at pH 7.4, more than 60% was released at pH 5.0 within the same time. The viability tests of human breast cancer cells (MCF-7) and human embryonic kidney cells (293T) show the potential application of MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates in the controlled intracellular delivery for cancer treatments.

Keywords: pH-sensitive, drug delivery, polyaspartamide, self-assembly, nano-aggregates

Procedia PDF Downloads 358
2274 Contemporary Living Spaces – Exploring, Differentiating, and Defining the Terms and Requirements of “Micro” and “Small” Homes in Bulgaria

Authors: Evgenia Dimova-Aleksandrova, Elitsa Deianova

Abstract:

Dynamic changes in modern life and habitation due to demographic, urban, technology, and ecological factors affect the size of modern homes leading to a trend of decreasing their area. The current paper aims to investigate the differences between “micro” homes and “small” homes. In Bulgaria, these two types are not included in legal regulations, and therefore, a precise definition and special requirements are needed and sought in order to include their characteristic features in contemporary individual habitation. The purpose of the current study is to determine limits in built-up volume for the two types, to create a definition of the terms “micro” and “small” home, and to find methods to distinguish them. A comparative analysis will differentiate these types of habitation units, thus determining the boundaries for the built-up area for both concepts. The analysis is based on a case study from European practices and is focused on defining minimal requirements for “micro” and “small” home in the context of contemporary demands for high quality habitation in limited areas.

Keywords: Bulgaria, differentiation, micro home, requirements, small home

Procedia PDF Downloads 100
2273 LIZTOXD: Inclusive Lizard Toxin Database by Using MySQL Protocol

Authors: Iftikhar A. Tayubi, Tabrej Khan, Mansoor M. Alsubei, Fahad A. Alsaferi

Abstract:

LIZTOXD provides a single source of high-quality information about proteinaceous lizard toxins that will be an invaluable resource for pharmacologists, neuroscientists, toxicologists, medicinal chemists, ion channel scientists, clinicians, and structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to explore the detail information of Lizard and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Lizard, toxin and toxin protein of different Lizard species. These interfaces created in this database will satisfy the demands of the scientific community by providing in-depth knowledge about Lizard and its toxin. In the next phase of our project we will adopt methodology and by using A MySQL and Hypertext Preprocessor (PHP) which and for designing Smart Draw. A database is a wonderful piece of equipment for storing large quantities of data efficiently. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, toxins, clinical data etc. LIZTOXD resource that provides comprehensive information about protein toxins from lizard toxins. The combination of specific classification schemes and a rich user interface allows researchers to easily locate and view information on the sequence, structure, and biological activity of these toxins. This manually curated database will be a valuable resource for both basic researchers as well as those interested in potential pharmaceutical and agricultural applications of lizard toxins.

Keywords: LIZTOXD, MySQL, PHP, smart draw

Procedia PDF Downloads 162
2272 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
2271 ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction

Authors: Salman Mohamadi, Seyed Mohammad Ali Tayaranian Hosseini, Hamidreza Amindavar

Abstract:

In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.

Keywords: epileptic seizure prediction , ARIMA, ARCH and GARCH modeling, heteroskedasticity, EEG

Procedia PDF Downloads 406
2270 Transformation Strategies of the Nigerian Textile and Clothing Industries: The Integration of China Clothing Sector Model

Authors: Adetoun Adedotun Amubode

Abstract:

Nigeria's Textile Industry was the second largest in Africa after Egypt, with above 250 vibrant factories and over 50 percent capacity utilization contributing to foreign exchange earnings and employment generation. Currently, multifaceted challenges such as epileptic power supply, inconsistent government policies, growing digitalization, smuggling of foreign textiles, insecurity and the inability of the local industries to compete with foreign products, especially Chinese textile, has created a hostile environment for the sector. This led to the closure of most of the textile industries. China's textile industry has experienced institutional change and industrial restructuring, having 30% of the world's market share. This paper examined the strategies adopted by China in transforming her textile and clothing industries and designed a model for the integration of these strategies to improve the competitive strength and growth of the Nigerian textile and clothing industries in a dynamic and changing market. The paper concludes that institutional support, regional production, export-oriented policy, value-added and branding cultivation, technological upgrading and enterprise resource planning be integrated into the Nigerian clothing and textile industries.

Keywords: clothing, industry, integration, Nigerian, textile, transformation.

Procedia PDF Downloads 156
2269 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 331
2268 Repeatable Scalable Business Models: Can Innovation Drive an Entrepreneurs Un-Validated Business Model?

Authors: Paul Ojeaga

Abstract:

Can the level of innovation use drive un-validated business models across regions? To what extent does industrial sector attractiveness drive firm’s success across regions at the time of start-up? This study examines the role of innovation on start-up success in six regions of the world (namely Sub Saharan Africa, the Middle East and North Africa, Latin America, South East Asia Pacific, the European Union and the United States representing North America) using macroeconomic variables. While there have been studies using firm level data, results from such studies are not suitable for national policy decisions. The need to drive a regional innovation policy also begs for an answer, therefore providing room for this study. Results using dynamic panel estimation show that innovation counts in the early infancy stage of new business life cycle. The results are robust even after controlling for time fixed effects and the study present variance-covariance estimation robust standard errors.

Keywords: industrial economics, un-validated business models, scalable models, entrepreneurship

Procedia PDF Downloads 282
2267 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 243
2266 The in vitro Effects of Various Immunomodulatory Nutritional Compounds on Antigen-Stimulated Whole-Blood Culture Cytokine Production

Authors: Ayu S. Muhamad, Michael Gleeson

Abstract:

Immunomodulators are substances that alter immune system via dynamic regulation of messenger molecules. It can be divided into immunostimulant and immunosuppressant. It can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system. Aim of this study is to investigate the effects of in vitro exposure to low and high doses of several immunomodulators which include caffeine, kaloba and quercetin on antigen-stimulated whole blood culture cytokine production. Whole blood samples were taken from 5 healthy males (age: 32 ± 12 years; weight: 75.7 ± 6.1 kg; BMI: 24.3 ± 1.5 kg/m2) following an overnight fast with no vigorous activity during the preceding 24 h. The whole blood was then stimulated with 50 µl of 100 x diluted Pediacel vaccine and low or high dose of immunomodulators in the culture plate. After 20 h incubation (5% CO2, 37°C), it was analysed using the Evidence Investigator to determine the production of cytokines including IL-2, IL-4, IL-10, IFN-γ, and IL-1α. Caffeine and quercetin showed a tendency towards decrease cytokine production as the doses were increased. On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production. In conclusion, we found that caffeine and quercetin have potential as immunosuppressant and kaloba as immunostimulant.

Keywords: caffeine, cytokine, immunomodulators, kaloba, quercetin

Procedia PDF Downloads 466
2265 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 145
2264 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 307
2263 Simulation and Experimentation of Solar Thermal Collector for Air Heating System Using Dynamic Ribs

Authors: Nishitha Chowdary, Prabhav Dwivedi

Abstract:

Solar radiation (or insolation) is responsible for 174 petawatts (PW) of energy reaching the Earth's atmosphere. About one-third of this is reflected in space. Solar energy is by far the most abundant source of energy on Earth. In this study to use solar energy to the fullest in a solar air heater, An analysis of a solar air heater duct roughened with fixed cylindrical ribs in 3-D has been done using CFD. These fixed cylindrical ribs have a uniform circular cross-section and are placed in transverse in-line and staggered arrangements. The orientation of ribs has been fixed and is perpendicular to the in-flow direction. Cylindrical ribs are arranged periodically with fixed pitch; therefore, one pitch length is only considered in the present study. Validation has been done with smooth as well as with roughened duct and is matched perfectly with the developed correlations. Geometric parameters, namely rib height (e), ranges from 1 to 2 mm and pitch ranges from 10 to 40 mm are used in the present investigation. Thermo-hydraulic performance parameters in terms of average Nusselt number and friction factor have been extracted for Reynolds number ranging 5000—18000 to optimize the performance of roughened duct.

Keywords: cylindrical ribs, solar air heater, thermo-hydraulic performance factor, roughened duct

Procedia PDF Downloads 154
2262 Life Cycle Cost Evaluation of Structures Retrofitted with Damped Cable System

Authors: Asad Naeem, Mohamed Nour Eldin, Jinkoo Kim

Abstract:

In this study, the seismic performance and life cycle cost (LCC) are evaluated of the structure retrofitted with the damped cable system (DCS). The DCS is a seismic retrofit system composed of a high-strength steel cable and pressurized viscous dampers. The analysis model of the system is first derived using various link elements in SAP2000, and fragility curves of the structure retrofitted with the DCS and viscous dampers are obtained using incremental dynamic analyses. The analysis results show that the residual displacements of the structure equipped with the DCS are smaller than those of the structure with retrofitted with only conventional viscous dampers, due to the enhanced stiffness/strength and self-centering capability of the damped cable system. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with viscous damper. It is also observed that the initial cost of the DCS method required for the seismic retrofit is smaller than that of the structure with viscous dampers and that the LCC of the structure equipped with the DCS is smaller than that of the structure with viscous dampers.

Keywords: damped cable system, fragility curve, life cycle cost, seismic retrofit, self-centering

Procedia PDF Downloads 551
2261 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
2260 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city

Procedia PDF Downloads 171
2259 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture

Authors: Abdelkader Mendas

Abstract:

The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.

Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture

Procedia PDF Downloads 638
2258 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
2257 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 128
2256 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 453
2255 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 61
2254 Theoretical Analysis and Numerical Evaluation of the Flow inside the Supersonic Nozzle for Chemical Lasers

Authors: Mohammedi Ferhate, Hakim Chadli, Laggoun Chaouki

Abstract:

The main objectives of work in this area are, first, obtaining the high laser energies in short time durations needed for the feasibility studies of laser induced thermodynamically exothermic chemical reactions , second, investigating the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using dense gaseous media.. We present results from the early development of an F atom source appropriate for HF and DF chemical laser research. We next explain the very important difficulties encountered in working with dense gases for that purpose, and we shall describe how, especially at Evaluation of downstream-mixing scheme –levels transitions (001) → (100) and (001) → (020) gas dynamic laser The physical phenomena that control the operation of presently existing laser devices are now sufficiently well understood, so that it is possible to predict that new generations of lasers could be designed in the future. The proposed model of excitation and relaxation levels was finally proved by the computational numerical code of Matlab toolboxes of different parameters of nozzle.

Keywords: hydrogen, combust, chemical laser, halogen atom

Procedia PDF Downloads 85
2253 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 273
2252 Flexible Furniture in Urban Open Spaces: A Tool to Achieve Social Sustainability

Authors: Mahsa Ghafouri, Guita Farivarsadri

Abstract:

In urban open spaces, furniture plays a crucial role in meeting various needs of the users over time. Furniture consists of elements that not only can facilitate physical needs individually but also fulfill social, psychological, and cultural demands on an urban scale. Creating adjustable urban spaces and using flexible furniture can provide the possibility of using urban spaces for a wide range of uses and activities and allow the engagement of users with distinct abilities and limitations in these activities. Flexibility in urban furniture can be seen as designing a number of modular components that are movable, expandable, adjustable, and changeable to accommodate various functions. Although there is a great amount of research related to flexibility and its distinct insights into achieving spaces that can cope with changing demands, this fundamental issue is often neglected in the design of urban furniture. However, in the long term, to address changing public needs over time, it can be logical to bring this quality into the design process to make spaces that can be sustained for a long time. This study aims to first introduce diverse kinds of flexible furniture that can be designed for urban public spaces and then to realize how this flexible furniture can improve the quality of public open spaces and social interaction and make them more adaptable over time and, as a result, achieve social sustainability. This research is descriptive and is mainly based on an extensive literature review and the analysis and classification of existing examples around the world. This research tends to illustrate various kinds of approaches that can help designers create flexible furniture to enhance the sustainability and quality of urban open spaces and, in this way, act as a guide for urban designers in this respect.

Keywords: flexible furniture, flexible design, urban open spaces, adaptability, moveability, social sustainability

Procedia PDF Downloads 59
2251 Factors behind Success of Nascent Social Enterprises in Pakistan: An Exploratory Factor Analysis

Authors: Abida Zanib

Abstract:

Social entrepreneurship is an attention-grabbing area to meet social needs. Stakeholders in the social sector of Pakistan, particularly investors, development activists and policy makers are considering it as an engine to economic growth and powerful tool to address social issues in inventive ways. However, absence of specific policy and legitimacy issues create hurdles in the way of success for emerging start-ups. The review of the literature reveals that research in this emerging phenomenon particularly in the case of Pakistan is inadequate. To fill this gap in the literature, this study aims to scrutinize characteristics of nascent social enterprises. The study collects data from 65-emerging social enterprises using questionnaire. The results of factor analysis highlight optimistic and driving qualities of Pakistani social entrepreneurs, which help them to survive and grow in the business world. Moreover, the study identifies several areas for improvements such as information disclosure, networking, corporate governance, mentorship programs, and trainings. The study notes that despite the absence of specific policy, dynamic entrepreneurial culture is fostering in Pakistan and recommends re-framing the education policy to support the development of social entrepreneurship.

Keywords: emerging, entrepreneurs, Pakistan, social, start-ups

Procedia PDF Downloads 151
2250 Causes of Blindness and Low Vision among Visually Impaired Population Supported by Welfare Organization in Ardabil Province in Iran

Authors: Mohammad Maeiyat, Ali Maeiyat Ivatlou, Rasul Fani Khiavi, Abouzar Maeiyat Ivatlou, Parya Maeiyat

Abstract:

Purpose: Considering the fact that visual impairment is still one of the countries health problem, this study was conducted to determine the causes of blindness and low vision in visually impaired membership of Ardabil Province welfare organization. Methods: The present study which was based on descriptive and national-census, that carried out in visually impaired population supported by welfare organization in all urban and rural areas of Ardabil Province in 2013 and Collection of samples lasted for 7 months. The subjects were inspected by optometrist to determine their visual status (blindness or low vision) and then referred to ophthalmologist in order to discover the main causes of visual impairment based on the international classification of diseases version 10. Statistical analysis of collected data was performed using SPSS software version 18. Results: Overall, 403 subjects with mean age of years participated in this study. 73.2% were blind, 26.8 % were low vision and according gender grouping 60.50 % of them were male, 39.50 % were female that divided into three groups with the age level of lower than 15 (11.2%) 15 to 49 (76.7%), and 50 and higher (12.1%). The age range was 1 to 78 years. The causes of blindness and low vision were in descending order: optic atrophy (18.4%), retinitis pigmentosa (16.8%), corneal diseases (12.4%), chorioretinal diseases (9.4%), cataract (8.9%), glaucoma (8.2%), phthisis bulbi (7.2%), degenerative myopia (6.9%), microphtalmos ( 4%), amblyopia (3.2%), albinism (2.5%) and nistagmus (2%). Conclusion: in this study the main causes of visual impairments were optic atrophy and retinitis pigmentosa, thus specific prevention plans can be effective in reducing the incidence of visual disabilities.

Keywords: blindness, low vision, welfare, ardabil

Procedia PDF Downloads 440
2249 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 374
2248 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 315
2247 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73