Search results for: toxicity testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3976

Search results for: toxicity testing

196 Characterization of Carbazole-Based Host Material for Highly Efficient Thermally Activated Delayed Fluorescence Emitter

Authors: Malek Mahmoudi, Jonas Keruckas, Dmytro Volyniuk, Jurate Simokaitiene, Juozas V. Grazulevicius

Abstract:

Host materials have been discovered as one of the most appealing methods for harvesting triplet states in organic materials for application in organic light-emitting diodes (OLEDs). The ideal host-guest system for emission in thermally delayed fluorescence OLEDs with 20% guest concentration for efficient energy transfer has been demonstrated in the present investigation. In this work, 3,3'-bis[9-(4-fluorophenyl) carbazole] (bFPC) has been used as the host, which induces balanced charge carrier transport for high-efficiency OLEDs.For providing a complete characterization of the synthesized compound, photophysical, photoelectrical, charge-transporting, and electrochemical properties of the compound have been examined. Excited-state lifetimes and singlet-triplet energy gaps were measured for characterization of photophysical properties, while thermogravimetric analysis, as well as differential scanning calorimetry measurements, were performed for probing of electrochemical and thermal properties of the compound. The electrochemical properties of this compound were investigated by cyclic voltammetry (CV) method, and ionization potential (IPCV) value of 5.68 eV was observed. UV–Vis absorption and photoluminescence spectrum of a solution of the compound in toluene (10-5 M) showed maxima at 302 and 405 nm, respectively. Photoelectron emission spectrometry was used for the characterization of charge-injection properties of the studied compound in solid. The ionization potential of this material was found to be 5.78 eV, and time-of-flight measurement was used for testing charge-transporting properties and hole mobility estimated using this technique in a vacuum-deposited layer reached 4×10-4 cm2 V-1s-1. Since the compound with high charge mobilities was tested as a host in an organic light-emitting diode. The device was fabricated by successive deposition onto a pre-cleaned indium tin oxide (ITO) coated glass substrate under a vacuum of 10-6 Torr and consisting of an indium-tin-oxide anode, hole injection and transporting layer(MoO3, NPB), emitting layer with bFPC as a host and 4CzIPN (2,4,5,6-tetra(9-carbazolyl)isophthalonitrile) which is a new highly efficient green thermally activated delayed fluorescence (TADF) material as an emitter, an electron transporting layer(TPBi) and lithium fluoride layer topped with aluminum layer as a cathode exhibited the highest maximum current efficiency and power efficiency of 33.9 cd/A and 23.5 lm/W, respectively and the electroluminescence spectrum showed only a peak at 512nm. Furthermore, the new bicarbazole-based compound was tested as a host in thermally activated delayed fluorescence organic light-emitting diodes are reaching luminance of 25300 cd m-2 and external quantum efficiency of 10.1%. Interestingly, the turn-on voltage was low enough (3.8 V), and such a device can be used for highly efficient light sources.

Keywords: thermally-activated delayed fluorescence, host material, ionization energy, charge mobility, electroluminescence

Procedia PDF Downloads 143
195 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 244
194 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus Aureus of Isolated from Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and Public Health Significance of Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Socio-demographic data and Public Health Significance were collected using a predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using an ice box to Mekelle University, College of Veterinary Sciences, for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by the disc diffusion method. Data obtained were cleaned and entered into STATA 22.0 and a logistic regression model with odds ratio was calculated to assess the association of risk factors with bacterial contamination. A P-value < 0.05 was considered statistically significant. Results: In the present study, 88 out of 250 (35.2%) were found to be contaminated with Staphylococcus aureus. Among the raw meat specimens, the positivity rate of Staphylococcus aureus was 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risks, factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35 3.35) was found to be statistically significant and have associated with Staphylococcus aureus contamination. All isolates of thirty-seven of Staphylococcus aureus were checked and displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. Whereas the showed resistance to cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aureus isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin, whereas they showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi-drug resistance pattern for Staphylococcus aureus was 90% and 100% of butchery and abattoir houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the development of hand washing behavior and availability of safe water in the butchery houses to reduce the burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics.

Keywords: abattoir house, AMR, butchery house, S. aureus

Procedia PDF Downloads 101
193 Management of Mycotoxin Production and Fungicide Resistance by Targeting Stress Response System in Fungal Pathogens

Authors: Jong H. Kim, Kathleen L. Chan, Luisa W. Cheng

Abstract:

Control of fungal pathogens, such as foodborne mycotoxin producers, is problematic as effective antimycotic agents are often very limited. Mycotoxin contamination significantly interferes with the safe production of foods or crops worldwide. Moreover, expansion of fungal resistance to commercial drugs or fungicides is a global human health concern. Therefore, there is a persistent need to enhance the efficacy of commercial antimycotic agents or to develop new intervention strategies. Disruption of the cellular antioxidant system should be an effective method for pathogen control. Such disruption can be achieved with safe, redox-active compounds. Natural phenolic derivatives are potent redox cyclers that inhibit fungal growth through destabilization of the cellular antioxidant system. The goal of this study is to identify novel, redox-active compounds that disrupt the fungal antioxidant system. The identified compounds could also function as sensitizing agents to conventional antimycotics (i.e., chemosensitization) to improve antifungal efficacy. Various benzo derivatives were tested against fungal pathogens. Gene deletion mutants of the yeast Saccharomyces cerevisiae were used as model systems for identifying molecular targets of benzo analogs. The efficacy of identified compounds as potent antifungal agents or as chemosensitizing agents to commercial drugs or fungicides was examined with methods outlined by the Clinical Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing. Selected benzo derivatives possessed potent antifungal or antimycotoxigenic activity. Molecular analyses by using S. cerevisiae mutants indicated antifungal activity of benzo derivatives was through disruption of cellular antioxidant or cell wall integrity system. Certain benzo analogs screened overcame tolerance of Aspergillus signaling mutants, namely mitogen-activated protein kinase mutants, to fludioxonil fungicide. Synergistic antifungal chemosensitization greatly lowered minimum inhibitory or fungicidal concentrations of test compounds, including inhibitors of mitochondrial respiration. Of note, salicylaldehyde is a potent antimycotic volatile that has some practical application as a fumigant. Altogether, benzo derivatives targeting cellular antioxidant system of fungi (along with cell wall integrity system) effectively suppress fungal growth. Candidate compounds possess the antifungal, antimycotoxigenic or chemosensitizing capacity to augment the efficacy of commercial antifungals. Therefore, chemogenetic approaches can lead to the development of novel antifungal intervention strategies, which enhance the efficacy of established microbe intervention practices and overcome drug/fungicide resistance. Chemosensitization further reduces costs and alleviates negative side effects associated with current antifungal treatments.

Keywords: antifungals, antioxidant system, benzo derivatives, chemosensitization

Procedia PDF Downloads 263
192 Comparison of Nutritional Status of Asthmatic vs Non-Asthmatic Adults

Authors: Ayesha Mushtaq

Abstract:

Asthma is a pulmonary disease in which blockade of the airway takes place due to inflammation as a response to certain allergens. Breathing troubles, cough, and dyspnea are one of the few symptoms. Several studies have indicated a significant effect on asthma due to changes in dietary routines. Certain food items, such as oily foods and other materials, are known to cause an increase in the symptoms of asthma. Low dietary intake of fruits and vegetables may be important in relation to asthma prevalence. The objective of this study is to assess and compare the nutritional status of asthmatic and non-asthmatic patients. The significance of this study lies in the factor that it will help nutritionists to arrange a feasible dietary routine for asthmatic patients. This research was conducted at the Pulmonology Department of the Pakistan Institute of Medical Science Islamabad. About thirty hundred thirty-four million people are affected by asthma worldwide. Pakistan is on the verge of being an uplifted urban population and asthma cases are increasingly high these days. Several studies suggest an increase in the Asthmatic patient population due to improper diet. This is a cross-sectional study aimed at assessing the nutritious standing of Asthmatic and non-asthmatic patients. This research took place at the Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. The research included asthmatic and non-asthmatic patients coming to the pulmonology department clinic at the Pakistan Institute of Medical Sciences (PIMS). These patients were aged between 20-60 years. A questionnaire was developed for these patients to estimate their dietary plans in these patients. The methodology included four sections. The first section was the Socio-Demographic profile, which included age, gender, monthly income and occupation. The next section was anthropometric measurements which included the weight, height and body mass index (BMI) of an individual. The next section, section three, was about the biochemical attributes, such as for biochemical profiling, pulmonary function testing (PFT) was performed. In the next section, Dietary habits were assessed by a food frequency questionnaire (FFQ) through food habits and consumption pattern was assessed. The next section life style data, in which the person's level of physical activity, sleep and smoking habits were assessed. The next section was statistical analysis. All the data obtained from the study were statistically analyzed and assessed. Most of the asthma Patients were females, with weight more than normal or even obese. Body Mass Index (BMI) was higher in asthma Patients than those in non-Asthmatic ones. When the nutritional Values were assessed, we came to know that these patients were low on certain nutrients and their diet included more junk and oily food than healthy vegetables and fruits. Beverages intake was also included in the same assessment. It is evident from this study that nutritional status has a contributory effect on asthma. So, patients on the verge of developing asthma or those who have developed asthma should focus on their diet, maintain good eating habits and take healthy diets, including fruits and vegetables rather than oily foods. Proper sleep may also contribute to the control of asthma.

Keywords: BMI, nutrition, PAL, diet

Procedia PDF Downloads 80
191 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 527
190 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 140
189 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 262
188 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 71
187 Elite Netball Players’ Perspectives on Long Term Athlete Development Programmes in South Africa

Authors: Petrus Louis Nolte

Abstract:

University sport in South Africa is not isolated from the complexity of globalization and professionalization of sport, as it forms an integral part of the sport development environment in South Africa. In order to align their sport programmes with global and professional requirements, several universities opted to develop elite sport programmes; recruit specialized personnel such as coaches, administrators and athletes; provide expert coaching; scientific and medical services; sports testing; fitness, technical and tactical expertise; sport psychological and rehabilitation support; academic guidance and career assistance; and student-athlete accommodation. In addition, universities provide administrative support and high-quality physical resources (training facilities) for the benefit of the overall South African sport system. Although it is not compulsory for universities to develop elite sport programmes to prepare their teams for competitions, elite competitions such as the annual Varsity Sport, University Sport South Africa (USSA) and local club competitions and leagues within university international competitions where universities not only compete but also deliver players for representative national netball teams. The aim of this study is therefore to describe the perceptions of players of the university elite netball programmes they were participating in. This study adopted a descriptive design with a quantitative approach, utilizing a self-structured questionnaire as research technique. As this research formed part of a national research project for NSA with a population of 172 national and provincial netball players, a sample of 92 university netball players from the population was selected. Content validity of the self-structured questionnaire was secured through a test-retest process, with construct validity through a member of the Statistical Consultation Services (STATCON) of the University of Johannesburg that provided feedback on the structural format of the questionnaire. Reliability was measured utilising Cronbach Alpha on p<0.005 level of significance. A reliability score of 0.87 was measured. The research was approved by the Board of Netball South Africa and ethical conduct implemented according to the processes and procedures approved by the Ethics Committees of the Faculty of Health Sciences, University of Johannesburg with clearance number REC-01-30-2019. From the results it is evident that university elite netball programmes are professional, especially with regards to the employment of knowledgeable and competent coaches and technical officials such as team managers and sport sciences staff. These professionals have access to elite training facilities, support staff, and relatively large groups of elite players, all elements of an elite programme that could enhance the national federation’s (Netball South Africa) system. Universities could serve the dual purpose of serving as university netball clubs, as well as providing elite training services and facilities as performance hubs for national players.

Keywords: elite sport programmes, university netball, player experiences, Varsity Sport netball

Procedia PDF Downloads 152
186 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 112
185 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities

Authors: Chen Wang, Gerard Rowe

Abstract:

The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.

Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education

Procedia PDF Downloads 112
184 A Player's Perspective of University Elite Netball Programmes in South Africa

Authors: Wim Hollander, Petrus Louis Nolte

Abstract:

University sport in South Africa is not isolated from the complexity of globalization and professionalization of sport, as it forms an integral part of the sports development environment in South Africa. In order to align their sports programs with global and professional requirements, several universities opted to develop elite sports programs; recruit specialized personnel such as coaches, administrators, and athletes; provide expert coaching; scientific and medical services; sports testing; fitness, technical and tactical expertise; sport psychological and rehabilitation support; academic guidance and career assistance; and student-athlete accommodation. In addition, universities provide administrative support and high-quality physical resources (training facilities) for the benefit of the overall South African sport system. Although it is not compulsory for universities to develop elite sports programs to prepare their teams for competitions, elite competitions such as the annual Varsity Sport, University Sport South Africa (USSA) and local club competitions and leagues within international university competitions where universities not only compete but also deliver players for representative national netball teams. The aim of this study is, therefore, to describe the perceptions of players of the university elite netball programs they were participating in. This study adopted a descriptive design with a quantitative approach, utilizing a self-structured questionnaire as a research technique. As this research formed part of a national research project for NSA with a population of 172 national and provincial netball players, a sample of 92 university netball players from the population was selected. Content validity of the self-structured questionnaire was secured through a test-retest process, with construct validity through a member of the Statistical Consultation Services (STATCON) of the University of Johannesburg that provided feedback on the structural format of the questionnaire. Reliability was measured utilizing Cronbach Alpha on p < 0.005 level of significance. A reliability score of 0.87 was measured. The research was approved by the Board of Netball South Africa and ethical conduct implemented according to the processes and procedures approved by the Ethics Committees of the Faculty of Health Sciences, the University of Johannesburg with clearance number REC-01-30-2019. From the results, it is evident that university elite netball programs are professional, especially with regards to the employment of knowledgeable and competent coaches and technical officials such as team managers and sport sciences staff. These professionals have access to elite training facilities, support staff, and relatively large groups of elite players, all elements of an elite program that could enhance the national federation’s (Netball South Africa) system. Universities could serve the dual purpose of serving as university netball clubs, as well as providing elite training services and facilities as performance hubs for national players.

Keywords: elite sport programmes, university netball, player experiences, varsity sport netball

Procedia PDF Downloads 168
183 Exploration of Barriers and Challenges to Innovation Process for SMEs: Possibilities to Promote Cooperation Between Scientific and Business Institutions to Address it

Authors: Indre Brazauskaite, Vilte Auruskeviciene

Abstract:

Significance of the study is outlined through current strategic management challenges faced by SMEs. First, innovation is recognized as competitive advantage in the market, having ever changing market conditions. It is of constant interest from both practitioners and academics to capture and capitalize on business opportunities or mitigate the foreseen risks. Secondly, it is recognized that integrated system is needed for proper implementation of innovation process, especially during the period of business incubation, associated with relatively high risks of new product failure. Finally, ability to successful commercialize innovations leads to tangible business results that allow to grow organizations further. This is particularly relevant to SMEs due to limited structures, resources, or capabilities. Cooperation between scientific and business institutions could be a tool of mutual interest to observe, address, and further develop innovations during the incubation period, which is the most demanding and challenging during the innovation process. Material aims to address the following problematics: i) indicate the major barriers and challenges in innovation process that SMEs are facing, ii) outline the possibilities for these barriers and challenges to be addressed by cooperation between scientific and business institutions. Basis for this research is stage-by-stage integrated innovation management process which presents existing challenges and needed aid in operational decision making. The stage-by-stage innovation management process exploration highlights relevant research opportunities that have high practical relevance in the field. It is expected to reveal the possibility for business incubation programs that could combine interest from both – practices and academia. Methodology. Scientific meta-analysis of to-date scientific literature that explores innovation process. Research model is built on the combination of stage-gate model and lean six sigma approach. It outlines the following steps: i) pre-incubation (discovery and screening), ii) incubation (scoping, planning, development, and testing), and iii) post-incubation (launch and commercialization) periods. Empirical quantitative research is conducted to address barriers and challenges related to innovation process among SMEs that limits innovations from successful launch and commercialization and allows to identify potential areas for cooperation between scientific and business institutions. Research sample, high level decision makers representing trading SMEs, are approached with structured survey based on the research model to investigate the challenges associated with each of the innovation management step. Expected findings. First, the current business challenges in the innovation process are revealed. It will outline strengths and weaknesses of innovation management practices and systems across SMEs. Secondly, it will present material for relevant business case investigation for scholars to serve as future research directions. It will contribute to a better understanding of quality innovation management systems. Third, it will contribute to the understanding the need for business incubation systems for mutual contribution from practices and academia. It can increase relevance and adaptation of business research.

Keywords: cooperation between scientific and business institutions, innovation barriers and challenges, innovation measure, innovation process, SMEs

Procedia PDF Downloads 152
182 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 87
181 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence

Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai

Abstract:

The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.

Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing

Procedia PDF Downloads 254
180 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 119
179 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta

Authors: G. A. Asciak, C. Camilleri, A. Rizzo

Abstract:

The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.

Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood

Procedia PDF Downloads 246
178 Previously Undescribed Cardiac Abnormalities in Two Unrelated Autistic Males with Causative Variants in CHD8

Authors: Mariia A. Parfenenko, Ilya S. Dantsev, Sergei V. Bochenkov, Natalia V. Vinogradova, Olga S. Groznova, Victoria Yu. Voinova

Abstract:

Introduction: Autism is the most common neurodevelopmental disorder. Autism is characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns and frequently co-occurs with epilepsy, intellectual disabilities, connective tissue disorders, and other conditions. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and neurodevelopment in embryogenesis. CHD8 is one of the genes most frequently involved in autism. Patients and methods: 2 unrelated male patients, P3 and P12, aged 3 and 12 years old, underwent whole genome sequencing, which determined that they both had different likely pathogenic variants, both previously undescribed in literature. Sanger sequencing later determined that P12 inherited the variant from his affected mother. Results: P3 and P12 presented with autism, a developmental delay, ataxia, sleep disorders, overgrowth, and macrocephaly, as well as other clinical features typically present in patients with causative variants in CHD8. The mother of P12 also has autistic traits, as well as ataxia, hypotonia, sleep disorders, and other symptoms. However, P3 and P12 also have different cardiac abnormalities. P3 had signs of a repolarization disorder: a flattened T wave in the III and aVF derivations and a negative T wave in the V1-V2 derivations. He also had structural valve anomalies with associated regurgitation, local contractility impairment of the left ventricular, and diastolic dysfunction of the right ventricle. Meanwhile, P12 had Wolff-Parkinson-White syndrome and underwent radiofrequency ablation at the age of 2 years. At the time of observation, P12 had mild sinus arrhythmia and an incomplete right bundle branch block, as well as arterial hypertension. Discussion: Cardiac abnormalities were not previously reported in patients with causative variants in CHD8. The underlying mechanism for the formation of those abnormalities is currently unknown. However, the two hypotheses are either a disordered interaction with CHD7 – another chromodomain remodeler known to be directly involved in the cardiophenotype of CHARGE syndrome – a rare condition characterized by coloboma, heart defects and growth abnormalities, or the disrupted functioning of CHD8 as an A-Kinase Anchoring Protein, which are known to modulate cardiac function. Conclusion: We observed 2 unrelated autistic males with likely pathogenic variants in CHD8 that presented with typical symptoms of CHD8-related neurodevelopmental disorder, as well as cardiac abnormalities. Cardiac abnormalities have, until now, been considered uncharacteristic for patients with causative variants in CHD8. Further accumulation of data, including experimental evidence of the involvement of CHD8 in heart formation, will elucidate the mechanism underlying the cardiophenotype of those patients. Acknowledgements: Molecular genetic testing of the patients was made possible by the Charity Fund for medical and social genetic aid projects «Life Genome.»

Keywords: autism spectrum disorders, chromodomain-helicase-DNA-binding protein 8, neurodevelopmental disorder, cardio phenotype

Procedia PDF Downloads 88
177 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 253
176 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 101
175 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 144
174 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 236
173 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 231
172 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development

Authors: Sinisa J. Vukicevic

Abstract:

Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.

Keywords: urban growth model, scenario development, spatial indicators, Metronamica

Procedia PDF Downloads 96
171 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus aureus of Isolated From Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in human and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and public health significance for Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Sociodemographic data and public health significance were collected using predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using ice box to Mekelle University, College of Veterinary Sciences for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by disc diffusion method. Data obtained were cleaned and entered in to STATA 22.0 and logistic regression model with odds ratio were calculated to assess the association of risk factors with bacterial contamination. P-value < 0.05 was considered as statistically significant. Results: In present study, 88 out of 250 (35.2%) were found to be contamination with Staphylococcus aureus. Among the raw meat specimens to be positivity rate of Staphylococcus aureus were 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risk factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35-3.35) were found to be statistically significant and ha ve associated with Staphylococcus aureus contamination. All isolates thirty sevevn of Staphyloco ccus aureus were checked displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. whereas the showed resistance of cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aur eu isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin whereas the showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi drug resistance pattern for Staphylococcus aureus were 90% and 100% of butchery and abattoirs houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the developed of hand washing behavior, and availability of safe water in the butchery houses to reduce burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always as a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics. Key words: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia,

Keywords: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia, staphylococcus aureuse, MDR

Procedia PDF Downloads 76
170 The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies

Authors: K. S. Al-Mugren, A. Yahya, S. Alodah, R. Alharbi, S. H. Almsaid , A. Alqahtani, H. Jaber, A. Basaqer, N. Alajra, N. Almoghati, A. Alsalman, Khalid Alharbi

Abstract:

Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices.

Keywords: biofertilizer, microorganisms, agro waste, nuclear technologies

Procedia PDF Downloads 143
169 The Network Effect on Green Information on Taiwan Social Network Sites

Authors: Pi Hsia Liang

Abstract:

The rise of Facebook, Twitter, and other social networks significantly changes in interconnections between people, enhancing the process of information dissemination and amplify the influence of that information. Therefore, to develop informational efficiency or signaling equilibrium type of information environment among social networks, without adverse selection effects, becomes an important issue. Thus, someone may post a piece of intentional information in relation to personal interest for trying to create marginal influence. Therefore, economists are seeking to establish theories of informational efficiency under social network environment in order to resolve adverse selection issues. Reputation could be one of the important factors in the process of creating informational efficiency. Additionally, investors how to process green information, or information of corporate social responsibility is a very important study. This study essentially employs experimental study for examining how investors use stock relevant green information in Facebook and various Taiwan local networks. Facebook, and blogs of Money DJ, Technews and cnYES, respectively, are the primary sites for this examination that also allow to differentiate effects between Facebook and other local social networks. Questionnaire is developed for such an experimental testing. Note that questionnaire allows this study to group, for example, decision frequency and length of time duration focusing on social networks that are used for discriminating investor type and competence of informed investor. This study selects 500 investors that can be separated into two respective 250 samples as the control group and 250 samples in such an experimental. The quantity of sample investor sufficiently results in statistic significance of this experimental study. The empirical results of this study can be used for explaining how financial information in relation to corporate social responsibility would be disseminated in social websites. Therefore, we can lead to better interpretation of price/earnings relationship type of study and empirical studies of green information usefulness or informational efficiency Note that the above mentioned empirical studies did not exist any social network and annual report of corporate social responsibility. This study expects to find the results that both network degree and network cluster significantly affected green information dissemination frequency. In other words, investors with more connections and with high clustered connections might exert a greater influence on their green information dissemination process. The preferred users of financial social networks could make better stock decision that could amplify effects of green information. In addition, Facebook would be more influential than other local Taiwan financial social networks, although Facebook is not a specialized financial social network. In other words, the popularity and reputation effects of Facebook significantly contribute to usefulness of green information and influence of green information. Third, it has a better chance to find rumor or cheating information in local Taiwan financial social networks than Facebook. In other words, Facebook possesses reputation effect, or a better informational efficiency. Or, even though Taiwan local financial social networks have marginal informational effects on stock price, because of shortage of informational efficiency or monitoring system, information could be a tool for those whom owning superior information.

Keywords: network effect on financial services, informational efficiency theory, social networks, social websites

Procedia PDF Downloads 248
168 Symbiotic Functioning, Photosynthetic Induction and Characterisation of Rhizobia Associated with Groundnut, Jack Bean and Soybean from Eswatini

Authors: Zanele D. Ngwenya, Mustapha Mohammed, Felix D. Dakora

Abstract:

Legumes are a major source of biological nitrogen, and therefore play a crucial role in maintaining soil productivity in smallholder agriculture in southern Africa. Through their ability to fix atmospheric nitrogen in root nodules, legumes are a better option for sustainable nitrogen supply in cropping systems than chemical fertilisers. For decades, farmers have been highly receptive to the use of rhizobial inoculants as a source of nitrogen due mainly to the availability of elite rhizobial strains at a much lower compared to chemical fertilisers. To improve the efficiency of the legume-rhizobia symbiosis in African soils would require the use of highly effective rhizobia capable of nodulating a wide range of host plants. This study assessed the morphogenetic diversity, photosynthetic functioning and relative symbiotic effectiveness (RSE) of groundnut, jack bean and soybean microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. According to the manufacturer's instructions, rhizobial isolates were cultured in yeast-mannitol (YM) broth until the late log phase and the bacterial genomic DNA was extracted using GenElute bacterial genomic DNA kit. The extracted DNA was subjected to enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and a dendrogram constructed from the band patterns to assess rhizobial diversity. To assess the N2-fixing efficiency of the authenticated rhizobia, photosynthetic rates (A), stomatal conductance (gs), and transpiration rates (E) were measured at flowering for plants inoculated with the test isolates. The plants were then harvested for nodulation assessment and measurement of plant growth as shoot biomass. The results of ERIC-PCR fingerprinting revealed the presence of high genetic diversity among the microsymbionts nodulating each of the three test legumes, with many of them showing less than 70% ERIC-PCR relatedness. The dendrogram generated from ERIC-PCR profiles grouped the groundnut isolates into 5 major clusters, while the jack bean and soybean isolates were grouped into 6 and 7 major clusters, respectively. Furthermore, the isolates also elicited variable nodule number per plant, nodule dry matter, shoot biomass and photosynthetic rates in their respective host plants under glasshouse conditions. Of the groundnut isolates tested, 38% recorded high relative symbiotic effectiveness (RSE >80), while 55% of the jack bean isolates and 93% of the soybean isolates recorded high RSE (>80) compared to the commercial Bradyrhizobium strains. About 13%, 27% and 83% of the top N₂-fixing groundnut, jack bean and soybean isolates, respectively, elicited much higher relative symbiotic efficiency (RSE) than the commercial strain, suggesting their potential for use in inoculant production after field testing. There was a tendency for both low and high N₂-fixing isolates to group together in the dendrogram from ERIC-PCR profiles, which suggests that RSE can differ significantly among closely related microsymbionts.

Keywords: genetic diversity, relative symbiotic effectiveness, inoculant, N₂-fixing

Procedia PDF Downloads 223
167 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 126