Search results for: distribution network reconfiguration
5673 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia
Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka
Abstract:
There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.Keywords: elevation, forest cover, rainfall, slope
Procedia PDF Downloads 5575672 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves
Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour
Abstract:
The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.Keywords: oil, viscosity, moisture, ultrasonic waves
Procedia PDF Downloads 5855671 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating
Authors: Merzak Laribi, Abdelmadjid Kasser
Abstract:
Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication
Procedia PDF Downloads 1295670 Efficient Backup Protection for Hybrid WDM/TDM GPON System
Authors: Elmahdi Mohammadine, Ahouzi Esmail, Najid Abdellah
Abstract:
This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks.Keywords: Wavlenght Division Multiplexed Passive Optical Network (WDM-PON), Time Division Multiplexed PON (TDM-PON), architecture, Protection, Wavelength Selective Switches (WSS), Optical Line Protection (OLP)
Procedia PDF Downloads 5475669 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1655668 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 615667 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 3165666 Geometric-Morphometric Analysis of Head, Pronotum and Elytra of Brontispa Longissima Gestro in Selected Provinces of the Philippines
Authors: Ana Marie T. Acevedo
Abstract:
This study was conducted to describe variations in the shapes of the elytra, head and pronotum of populations of adult Brontispa longissima (Gestro) infesting coconut farms from selected areas in the Philippines using Cluster Analysis, Relative Warp Analysis coupled with box plot and histograms and Procustean analysis. The data used in this study included shape residuals captured using the method of landmark based geometric morphometrics. Results: The results of the cluster analyses based on the average shapes of the elytra, head and pronotum shows no consistent pattern of similarity between and among five populations of B. longissima. When localized variations using Relative Warp Analysis coupled with box plot and histograms was done, the findings revealed that RWA was only successful in summarizing variations using two relative warps in the shape of the elytra where the first two warps contained 86.29% of the variations of the female and 85.48% for the males. For the head and pronotum, the first two relative warps captured less than 50% of the overall variation. Looking at the shapes of the frequency histograms, all were found to follow a unimodal distribution. The box plots reveal no consistent results. Among the three characters studied only the elytra were more robust and reliable compared to head and pronotum and then Tandag differ from the rest of the other over-lapping populations. On the other hand, Procustean Analyses revealed that elytra were more spread in the posterior region both in male and female. The coordinates in head and pronotum were evenly distributed. In the overlapping consensus configurations show that variability was exaggerated in the right side of the elytra and the posterior parts of the head and pronotum. Results also showed expansion among females while compression among males in elytra. For males, expansion are localized in the posterior part of the elytra, For the head, results showed asymmetry in the distribution of expansion areas where expansion are observed in the right postero-lateral aspect of the female head. Conclusion: The overall results may imply that they might belong to one operational taxonomic unit or ecotype or biotype. Geography might not be the factor responsible for the differentiation of the populations of B. longissima.Keywords: cluster analysis, relative warp analysis, procrustean analysis, environmental parameters
Procedia PDF Downloads 3205665 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow
Authors: Masood Otarod, Ronald M. Supkowski
Abstract:
This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations
Procedia PDF Downloads 2745664 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro
Authors: Safwan Mawlood Hussien
Abstract:
Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro
Procedia PDF Downloads 1245663 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2665662 Discrete-Time Bulk Queue with Service Capacity Depending on Previous Service Time
Authors: Yutae Lee
Abstract:
This paper considers a discrete-time bulk-arrival bulkservice queueing system, where service capacity varies depending on the previous service time. By using the generating function technique and the supplementary variable method, we compute the distributions of the queue length at an arbitrary slot boundary and a departure time.Keywords: discrete-time queue, bulk queue, variable service capacity, queue length distribution
Procedia PDF Downloads 4825661 Study and Simulation of a Sever Dust Storm over West and South West of Iran
Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi
Abstract:
In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem
Procedia PDF Downloads 2725660 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension
Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto
Abstract:
The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor
Procedia PDF Downloads 1735659 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti
Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms
Abstract:
Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing
Procedia PDF Downloads 1305658 Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey
Authors: M. Budakoglu, M. Karaman
Abstract:
Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples.Keywords: Lake Acıgöl, recent lake sediment, geochemical speciation of major and trace elements, heavy metals, Denizli, Turkey
Procedia PDF Downloads 4145657 Collagen Hydrogels Cross-Linked by Squaric Acid
Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska
Abstract:
Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.Keywords: collagen, squaric acid, cross-linking, hydrogel
Procedia PDF Downloads 3945656 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas
Abstract:
The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm
Procedia PDF Downloads 1025655 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system
Procedia PDF Downloads 3045654 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 3055653 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 1155652 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 4635651 A Simulation-Based Study of Dust Ingression into Microphone of Indoor Consumer Electronic Devices
Authors: Zhichao Song, Swanand Vaidya
Abstract:
Nowadays, most portable (e.g., smartphones) and wearable (e.g., smartwatches and earphones) consumer hardware are designed to be dustproof following IP5 or IP6 ratings to ensure the product is able to handle potentially dusty outdoor environments. On the other hand, the design guideline is relatively vague for indoor devices (e.g., smart displays and speakers). While it is generally believed that the indoor environment is much less dusty, in certain circumstances, dust ingression is still able to cause functional failures, such as microphone frequency response shift and camera black spot, or cosmetic dissatisfaction, mainly the dust build up in visible pockets and gaps which is hard to clean. In this paper, we developed a simulation methodology to analyze dust settlement and ingression into known ports of a device. A closed system is initialized with dust particles whose sizes follow Weibull distribution based on data collected in a user study, and dust particle movement was approximated as a settlement in stationary fluid, which is governed by Stokes’ law. Following this method, we simulated dust ingression into MEMS microphone through the acoustic port and protective mesh. Various design and environmental parameters are evaluated including mesh pore size, acoustic port depth-to-diameter ratio, mass density of dust material and inclined angle of microphone port. Although the dependencies of dust resistance on these parameters are all monotonic, smaller mesh pore size, larger acoustic depth-to-opening ratio and more inclined microphone placement (towards horizontal direction) are preferred for dust resistance; these preferences may represent certain trade-offs in audio performance and compromise in industrial design. The simulation results suggest the quantitative ranges of these parameters, with more pronounced effects in the improvement of dust resistance. Based on the simulation results, we proposed several design guidelines that intend to achieve an overall balanced design from audio performance, dust resistance, and flexibility in industrial design.Keywords: dust settlement, numerical simulation, microphone design, Weibull distribution, Stoke's equation
Procedia PDF Downloads 1115650 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China
Authors: Bai-Chen Xie, Xian-Peng Chen
Abstract:
China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation
Procedia PDF Downloads 1005649 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality
Authors: Heichia Wang, Yalan Chao
Abstract:
Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network
Procedia PDF Downloads 1325648 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering
Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif
Abstract:
In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network
Procedia PDF Downloads 2425647 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 3185646 Regularizing Software for Aerosol Particles
Authors: Christine Böckmann, Julia Rosemann
Abstract:
We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization
Procedia PDF Downloads 3455645 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 1185644 Biophysically Motivated Phylogenies
Authors: Catherine Felce, Lior Pachter
Abstract:
Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.Keywords: phylogenetics, single-cell, biophysical modeling, transcription
Procedia PDF Downloads 64