Search results for: transfer matrix method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22060

Search results for: transfer matrix method

18370 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke

Authors: Alireza Rafie Boldaji, Ahmad Saboonchi

Abstract:

Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.

Keywords: CFD, two-phase, choke, critical

Procedia PDF Downloads 268
18369 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 25
18368 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 87
18367 Sarvathobhadram-Organic Initiative: Cooperative Model for Resilient Agriculture by Adopting System of Rice Intensification

Authors: Sreeni K. R.

Abstract:

Sarvathobhadram-Organic–Farmers Cooperative was helpful in supporting small and marginal farmers in customizing, adapting, and tailoring the system to their specific requirements. The Farmers Club, which has 50 members, was founded in May 2020 to create additional cash while also encouraging farmers to shift to organic farming. The club's mission is to ensure food security, livelihood, and entrepreneurship in the Anthikad Block Panchayat. The project addressed climate change and resilience, collaborating with government departments and utilizing convergence to maximize the schemes accessible to farmers in panchayath. The transformation was sluggish initially, but it accelerated over time, indicating that farmers have variable levels of satisfaction based on a variety of circumstances. This paper examines the changing trend in the area after adopting organic farming using the SRI method, the increase in production, and the success of the convergence method. It also attempts to find out various constraints faced by farmers during the paradigm shift from conventional methods to organic, and the results have proven that SRI should be considered as a potential cultivation method for all farmer's groups (Padasekharam).

Keywords: Sarvathobhadram-Organic, Thanniyam gram Panchayat, organic Joythi rice, convergence method, Jeevamirtham, natural methods, system of rice intensification

Procedia PDF Downloads 132
18366 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 250
18365 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 165
18364 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 444
18363 Generation of Mesoporous Silica Shell onto SSZ-13 and Its Effects on Methanol to Olefins

Authors: Ying Weiyong

Abstract:

The micro/mesoporous core-shell composites compromising SSZ-13 cores and mesoporous silica shells were synthesized successfully with the soft template of cetytrimethylammonium. The shell thickness could be tuned from 25 nm to 100 nm by varying the TEOS/SSZ-13 ratio. The BET and SEM results show the core-shell composites possessing the tunable surface area (544.7-811.0 m2/g) with plenty of mesopores (2.7 nm). The acidity intensity of the strong acid sites on SSZ-13 was remarkably impaired with the decoration of the mesoporous silica shell, which leads to the suppression of the hydrogen transfer reaction in MTO reaction. The micro/mesoporous core-shell composites exhibit better methanol to olefins reaction performance with a prolonged lifetime and the improvement of light olefins selectivity.

Keywords: core-shell, mesoporous silica, methanol to olefins, SSZ-13

Procedia PDF Downloads 155
18362 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 471
18361 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology

Authors: Amit Kamra, V. K. Jain, Pragya

Abstract:

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.

Keywords: enhancement, mammography, multi-scale, mathematical morphology

Procedia PDF Downloads 410
18360 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 499
18359 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

Abstract:

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

Keywords: robotic, automated, production, offline programming, CAD

Procedia PDF Downloads 376
18358 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, Crystallinity, Graft copolymerization, Thermal properties

Procedia PDF Downloads 155
18357 Hit-Or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing

Procedia PDF Downloads 322
18356 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 331
18355 Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano

Authors: Afy Syahidan ACHMAD, Astin NURDIANA, SURYANTINI

Abstract:

In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process.

Keywords: volcanostratigraphy, study, method, volcanic deposit

Procedia PDF Downloads 390
18354 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering

Procedia PDF Downloads 471
18353 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 420
18352 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 205
18351 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 180
18350 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems

Authors: Mohamed Barbary, Mohamed H. Abd El-azeem

Abstract:

Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter

Procedia PDF Downloads 47
18349 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 328
18348 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 320
18347 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 582
18346 Assessment of the Impact of Teaching Methodology on Skill Acquisition in Music Education among Students in Emmanuel Alayande University of Education, Oyo

Authors: Omotayo Abidemi Funmilayo

Abstract:

Skill acquisition in professional fields has been prioritized and considered important to demonstrate the mastery of subject matter and present oneself as an expert in such profession. The ability to acquire skills in different fields, however calls for different method from the instructor or teacher during training. Music is not an exception of such profession, where there exist different area of skills acquisition require practical performance. This paper, however, focused on the impact and effects of different methods on acquisition of practical knowledge in the handling of some musical instruments among the students of Emmanuel Alayande College of Education, Oyo. In this study, 30 students were selected and divided into two groups based on the selected area of learning, further division were made on each of the two major groups to consist of five students each, to be trained using different methodology for two months and three hours per week. Comparison of skill acquired were made using standard research instrument at reliable level of significance, test were carried out on the thirty students considered for the study based on area of skill acquisition. The students that were trained on the keyboard and saxophone using play way method, followed by the students that were trained using demonstration method while the set of students that received teaching instruction through lecture method performed below average. In conclusion, the study reveals that ability to acquire professional skill on handling musical instruments are better enhanced using play way method.

Keywords: music education, skill acquisition, keyboard, saxophone

Procedia PDF Downloads 55
18345 The Mechanism of Antimicrobial Activity and Antioxidant Effects of the Essential Oil and the Methanolic Extract of Carum montanum (Coss. et Dur.) Benth. Et Hook. Aerial Parts from Algeria

Authors: Meriem El Kolli, Hocine Laouer, Hayet El Kolli, Salah Akkal

Abstract:

The methanolic extract (ME) of C. montanum obtained by a hydo-alcoholic maceration and its polyphenol content was evaluated by Folin-Ciocalteu method. This extract and C. montanum essential oil were screened for antimicrobial activity against 21 microbial strains by agar diffusion method. MICs of the EO were determined by the broth micro dilution method. The mechanism of action of the EO was determined on the susceptible strains by the time kill assay and the lysis experience. Antioxidant properties were studied by both free DPPH radical scavenging and reducing power techniques. The TPC in the ME showed a high level of 101.50 ± 5.33 mg GAE /mg. B. cereus was the most sensitive strain with MIC of 55.5 µg/ml , then K. pneumoniae (111 µg/ml). A remarkable decrease in a survival rate as well as in the absorbance at 260 nm were recorded, which suggest that the cytoplasm membrane is one of the targets of the EO. Antioxidant effects were concentration dependent and IC50 values were 1.09 ± 0.37 µg/ml for the EO and 65.04 ± 0.00 µg/ml for the ME by DPPH method and a reducing power dose-dependent. In conclusion, C. montanum extracts showed potent which could be exploited in the food industry for food preservation.

Keywords: C. montanum, Apiaceae, essential oils, antimicrobial activity, antioxidant activity, reducing power

Procedia PDF Downloads 227
18344 Soft Pneumatic Actuators Fabricated Using Soluble Polymer Inserts and a Single-Pour System for Improved Durability

Authors: Alexander Harrison Greer, Edward King, Elijah Lee, Safa Obuz, Ruhao Sun, Aditya Sardesai, Toby Ma, Daniel Chow, Bryce Broadus, Calvin Costner, Troy Barnes, Biagio DeSimone, Yeshwin Sankuratri, Yiheng Chen, Holly Golecki

Abstract:

Although a relatively new field, soft robotics is experiencing a rise in applicability in the secondary school setting through The Soft Robotics Toolkit, shared fabrication resources and a design competition. Exposing students outside of university research groups to this rapidly growing field allows for development of the soft robotics industry in new and imaginative ways. Soft robotic actuators have remained difficult to implement in classrooms because of their relative cost or difficulty of fabrication. Traditionally, a two-part molding system is used; however, this configuration often results in delamination. In an effort to make soft robotics more accessible to young students, we aim to develop a simple, single-mold method of fabricating soft robotic actuators from common household materials. These actuators are made by embedding a soluble polymer insert into silicone. These inserts can be made from hand-cut polystyrene, 3D-printed polyvinyl alcohol (PVA) or acrylonitrile butadiene styrene (ABS), or molded sugar. The insert is then dissolved using an appropriate solvent such as water or acetone, leaving behind a negative form which can be pneumatically actuated. The resulting actuators are seamless, eliminating the instability of adhering multiple layers together. The benefit of this approach is twofold: it simplifies the process of creating a soft robotic actuator, and in turn, increases its effectiveness and durability. To quantify the increased durability of the single-mold actuator, it was tested against the traditional two-part mold. The single-mold actuator could withstand actuation at 20psi for 20 times the duration when compared to the traditional method. The ease of fabrication of these actuators makes them more accessible to hobbyists and students in classrooms. After developing these actuators, they were applied, in collaboration with a ceramics teacher at our school, to a glove used to transfer nuanced hand motions used to throw pottery from an expert artist to a novice. We quantified the improvement in the users’ pottery-making skill when wearing the glove using image analysis software. The seamless actuators proved to be robust in this dynamic environment. Seamless soft robotic actuators created by high school students show the applicability of the Soft Robotics Toolkit for secondary STEM education and outreach. Making students aware of what is possible through projects like this will inspire the next generation of innovators in materials science and robotics.

Keywords: pneumatic actuator fabrication, soft robotic glove, soluble polymers, STEM outreach

Procedia PDF Downloads 125
18343 Decision Support System for Solving Multi-Objective Routing Problem

Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal

Abstract:

This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.

Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path

Procedia PDF Downloads 396
18342 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials

Authors: Gennady M. Kulikov, Svetlana V. Plotnikova

Abstract:

This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.

Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method

Procedia PDF Downloads 680
18341 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 70