Search results for: mapping algorithm
946 Healthcare Big Data Analytics Using Hadoop
Authors: Chellammal Surianarayanan
Abstract:
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare
Procedia PDF Downloads 413945 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model
Procedia PDF Downloads 151944 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine
Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji
Abstract:
The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis
Procedia PDF Downloads 319943 Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate
Authors: Jinkoo Kim, Minsung Kim
Abstract:
This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016).Keywords: seismic retrofit, slit dampers, friction dampers, hybrid dampers
Procedia PDF Downloads 282942 Social Inequality and Inclusion Policies in India: Lessons Learned and the Way Forward
Authors: Usharani Rathinam
Abstract:
Although policies directing inclusion of marginalized were in effect, majority of chronically impoverished in India belonged to schedule caste and schedule tribes. Also, taking into account that poverty is gendered; destitute women belonged to lower social order whose need is not largely highlighted at policy level. This paper discusses on social relations poverty which highlights on how social order that existed structurally in the society can perpetuate chronic poverty, followed by a critical review on social inclusion policies of India, its merits and demerits in addressing chronic poverty. Multiple case study design is utilized to address this concern in four districts of India; Jhansi, Tikamgarh, Cuddalore and Anantapur. These four districts were selected by purposive sampling based on the criteria; the district should either be categorized as a backward district or should have a history of high poverty rate. Qualitative methods including eighty in-depth interviews, six focus group discussions, six social mapping procedures and three key informant interviews were conducted in 2011, at each of the locations. Analysis of the data revealed that irrespective of gender, schedule castes and schedule tribe participants were found to be chronically poor in all districts. Caste based discrimination is exhibited at both micro and macro levels; village and institutional levels. At village level, lower caste respondents had lesser access to public resources. Also, within institutional settings, due to confiscation, unequal access to resources is noticed, especially in fund distribution. This study found that half of the budget intended for schedule caste and schedule tribes were confiscated by upper caste administrative staffs. This implies that power based on social hierarchy marginalize lower caste participants from accessing better economic, social, and political benefits, that had led them to suffer long term poverty. This study also explored the traditional ties between caste, social structure and bonded labour as a cause of long-term poverty. Though equal access is being emphasized in constitutional rights, issues at micro level have not been reflected in formulation of these rights. Therefore, it is significant for a policy to consider the structural complexity and then focus on issues such as equal distribution of assets and infrastructural facilities that will reduce exclusion and foster long-term security in areas such as employment, markets and public distribution.Keywords: caste, inclusion policies, India, social order
Procedia PDF Downloads 206941 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 72940 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.Keywords: biomass concentration, extended Kalman filter, particle filter, state estimation, specific growth rate
Procedia PDF Downloads 429939 Development of Trigger Tool to Identify Adverse Drug Events From Warfarin Administered to Patient Admitted in Medical Wards of Chumphae Hospital
Authors: Puntarikorn Rungrattanakasin
Abstract:
Objectives: To develop the trigger tool to warn about the risk of bleeding as an adverse event from warfarin drug usage during admission in Medical Wards of Chumphae Hospital. Methods: A retrospective study was performed by reviewing the medical records for the patients admitted between June 1st,2020- May 31st, 2021. ADEs were evaluated by Naranjo’s algorithm. The international normalized ratio (INR) and events of bleeding during admissions were collected. Statistical analyses, including Chi-square test and Reciever Operating Characteristic (ROC) curve for optimal INR threshold, were used for the study. Results: Among the 139 admissions, the INR range was found to vary between 0.86-14.91, there was a total of 15 bleeding events, out of which 9 were mild, and 6 were severe. The occurrence of bleeding started whenever the INR was greater than 2.5 and reached the statistical significance (p <0.05), which was in concordance with the ROC curve and yielded 100 % sensitivity and 60% specificity in the detection of a bleeding event. In this regard, the INR greater than 2.5 was considered to be an optimal threshold to alert promptly for bleeding tendency. Conclusions: The INR value of greater than 2.5 (>2.5) would be an appropriate trigger tool to warn of the risk of bleeding for patients taking warfarin in Chumphae Hospital.Keywords: trigger tool, warfarin, risk of bleeding, medical wards
Procedia PDF Downloads 148938 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 95937 A World Map of Seabed Sediment Based on 50 Years of Knowledge
Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès
Abstract:
Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.Keywords: marine sedimentology, seabed map, sediment classification, world ocean
Procedia PDF Downloads 232936 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 235935 A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied, known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity, which cannot be explained by modern physics, and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe, which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature can be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a "neutral state," possessing an energy level that is referred to as the "base energy." The governing principles of base energy are discussed in detail in our second paper in the series "A Conceptual Study for Addressing the Singularity of the Emerging Universe," which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution
Procedia PDF Downloads 99934 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.Keywords: parameterization, response surface, structure optimization, pressure hull
Procedia PDF Downloads 233933 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 365932 Collateral Impact of Water Resources Development in an Arsenic Affected Village of Patna District
Authors: Asrarul H. Jeelani
Abstract:
Arsenic contamination of groundwater and its’ health implications in lower Gangetic plain of Indian states started reporting in the 1980s. The same period was declared as the first water decade (1981-1990) to achieve ‘water for all.’ To fulfill the aim, the Indian government, with the support of international agencies installed millions of hand-pumps through water resources development programs. The hand-pumps improve the accessibility if the groundwater, but over-extraction of it increases the chances of mixing of trivalent arsenic which is more toxic than pentavalent arsenic of dug well water in Gangetic plain and has different physical manifestations. Now after three decades, Bihar (middle Gangetic plain) is also facing arsenic contamination of groundwater and its’ health implications. Objective: This interdisciplinary research attempts to understand the health and social implications of arsenicosis among different castes in Haldi Chhapra village and to find the association of ramifications with water resources development. Methodology: The Study used concurrent quantitative dominant mix method (QUAN+qual). The researcher had employed household survey, social mapping, interviews, and participatory interactions. However, the researcher used secondary data for retrospective analysis of hand-pumps and implications of arsenicosis. Findings: The study found 88.5% (115) household have hand-pumps as a source of water however 13.8% uses purified supplied water bottle and 3.6% uses combinations of hand-pump, bottled water and dug well water for drinking purposes. Among the population, 3.65% of individuals have arsenicosis, and 2.72% of children between the age group of 5 to 15 years are affected. The caste variable has also emerged through quantitative as well as geophysical locations analysis as 5.44% of arsenicosis manifested individual belong to scheduled caste (SC), 3.89% to extremely backward caste (EBC), 2.57% to backward caste (BC) and 3% to other. Among three clusters of arsenic poisoned locations, two belong to SC and EBC. The village as arsenic affected is being discriminated, whereas the affected individual is also facing discrimination, isolation, stigma, and problem in getting married. The forceful intervention to install hand-pumps in the first water decades and later restructuring of the dug well destroyed a conventional method of dug well cleaning. Conclusion: The common manifestation of arsenicosis has increased by 1.3% within six years of span in the village. This raised the need for setting up a proper surveillance system in the village. It is imperative to consider the social structure for arsenic mitigation program as this research reveals caste as a significant factor. The health and social implications found in the study; retrospectively analyzed as the collateral impact of water resource development programs in the village.Keywords: arsenicosis, caste, collateral impact, water resources
Procedia PDF Downloads 108931 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 67930 Experimental Study of Impregnated Diamond Bit Wear During Sharpening
Authors: Rui Huang, Thomas Richard, Masood Mostofi
Abstract:
The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate
Procedia PDF Downloads 99929 The Trigger-DAQ System in the Mu2e Experiment
Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella
Abstract:
The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).Keywords: trigger, daq, mu2e, Fermilab
Procedia PDF Downloads 155928 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon
Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon
Abstract:
A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution
Procedia PDF Downloads 231927 Achieving Them Both: Business and Wellness Outcomes in Health Organizations – the 'Tip' Laser Intervention
Authors: Shosh Kazaz, Shmuel Banai, Vered Zilberberg
Abstract:
Optimizing high business performance and employee's well-being simultaneously often challenges organizations. 'TIP' intervention enables achieving them both as the given project demonstrates. Increasing outcomes and improving performance were the initial motivators for this explorative project, followed by a request of the head of the Cardiology department: 'I know we are the best at our clinical practice, but we need to take it further and break our own glass ceiling.' Two guided interventions were conducted in two different units within the department, designed to implement advanced managerial and business-oriented tools, along with 'soft tools' based on coaching psychology and particularly wellness coaching. The organ department multi-disciplinary teams were assembled, aiming to manage and lead the process: mapping the patients' flow, creating solutions, implementing, assessing, improving and assimilating them. Approximately four months later, without additional external resources, meaningful results emerged by the teams in terms of business and performance: shortening the hospitalization length at a given procedure (from 7 to 2.1 days); increasing the availability of Catheterization laboratory by 16% daily – resulting profitability raise; improving patients' journey and experience. A year later, those results are maintained. Furthermore, interviews with the participants revealed positive perceptions regarding the department; a higher sense of joyfulness, connectedness, belonging and a better department climate were reported. Additionally, participants reported a higher sense of fulfillment as opposed to their earliest skepticism and cynicism about their ability to enhance outcomes without more resources (budget and/or manpower), experiencing a mindset change toward the possibility of leading personal and professional growth processes. These reports were supported by analyzing a set of questionnaires that the participants completed, parallel to a control group of non-participating colleagues. Although the assessment was taken a year after the completion of the project and during 'covid-19th-3rd national quarantine, the results indicated a significant impact on several personal parameters associated with wellness, compared to the control group. The participants were higher in self-efficacy and organizational commitment; men were higher in resilience and optimism and women were higher in well-being. In conclusion, the 'TIP' relatively short intervention integrates advanced managerial and wellness coaching tools, empowers organizational resources: Team, Individual and Process and by that generates multi-impact measurable results in terms of employee's wellness parameters along with business performance and patient care.Keywords: coaching, health and wellness, health management, leadership and well-being
Procedia PDF Downloads 183926 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index
Procedia PDF Downloads 419925 Modeling Anisotropic Damage Algorithms of Metallic Structures
Authors: Bahar Ayhan
Abstract:
The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.Keywords: anisotropic damage, finite element method, plasticity, coupling
Procedia PDF Downloads 206924 Integrated Process Modelling of a Thermophilic Biogas Plant
Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm
Procedia PDF Downloads 435923 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity
Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier
Abstract:
The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model
Procedia PDF Downloads 319922 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique
Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi
Abstract:
The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)
Procedia PDF Downloads 195921 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper
Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam
Abstract:
Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook
Procedia PDF Downloads 96920 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 112919 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.Keywords: data science, non-negative matrix factorization, missing data, quality of services
Procedia PDF Downloads 131918 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach
Authors: Jorge R. Santos, Pedro Sebastiao
Abstract:
In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js
Procedia PDF Downloads 148917 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 497