Search results for: renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8613

Search results for: renewable energy

4953 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 258
4952 Comparison of Inexpensive Cell Disruption Techniques for an Oleaginous Yeast

Authors: Scott Nielsen, Luca Longanesi, Chris Chuck

Abstract:

Palm oil is obtained from the flesh and kernel of the fruit of oil palms and is the most productive and inexpensive oil crop. The global demand for palm oil is approximately 75 million metric tonnes, a 29% increase in global production of palm oil since 2016. This expansion of oil palm cultivation has resulted in mass deforestation, vast biodiversity destruction and increasing net greenhouse gas emissions. One possible alternative is to produce a saturated oil, similar to palm, from microbes such as oleaginous yeast. The yeasts can be cultured on sugars derived from second-generation sources and do not compete with tropical forests for land. One highly promising oleaginous yeast for this application is Metschnikowia pulcherrima. However, recent techno-economic modeling has shown that cell lysis and standard lipid extraction are major contributors to the cost of the oil. Typical cell disruption techniques to extract either single cell oils or proteins have been based around bead-beating, homogenization and acid lysis. However, these can have a detrimental effect on lipid quality and are energy-intensive. In this study, a vortex separator, which produces high sheer with minimal energy input, was investigated as a potential low energy method of lysing cells. This was compared to four more traditional methods (thermal lysis, acid lysis, alkaline lysis, and osmotic lysis). For each method, the yeast loading was also examined at 1 g/L, 10 g/L and 100 g/L. The quality of the cell disruption was measured by optical cell density, cell counting and the particle size distribution profile comparison over a 2-hour period. This study demonstrates that the vortex separator is highly effective at lysing the cells and could potentially be used as a simple apparatus for lipid recovery in an oleaginous yeast process. The further development of this technology could potentially reduce the overall cost of microbial lipids in the future.

Keywords: palm oil substitute, metschnikowia pulcherrima, cell disruption, cell lysis

Procedia PDF Downloads 206
4951 Model Based Fault Diagnostic Approach for Limit Switches

Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak

Abstract:

The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.

Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space

Procedia PDF Downloads 617
4950 Contribution at Dimensioning of the Energy Dissipation Basin

Authors: M. Aouimeur

Abstract:

The environmental risks of a dam and particularly the security in the Valley downstream of it,, is a very complex problem. Integrated management and risk-sharing become more and more indispensable. The definition of "vulnerability “concept can provide assistance to controlling the efficiency of protective measures and the characterization of each valley relatively to the floods's risk. Security can be enhanced through the integrated land management. The social sciences may be associated to the operational systems of civil protection, in particular warning networks. The passage of extreme floods in the site of the dam causes the rupture of this structure and important damages downstream the dam. The river bed could be damaged by erosion if it is not well protected. Also, we may encounter some scouring and flooding problems in the downstream area of the dam. Therefore, the protection of the dam is crucial. It must have an energy dissipator in a specific place. The basin of dissipation plays a very important role for the security of the dam and the protection of the environment against floods downstream the dam. It allows to dissipate the potential energy created by the dam with the passage of the extreme flood on the weir and regularize in a natural manner and with more security the discharge or elevation of the water plan on the crest of the weir, also it permits to reduce the speed of the flow downstream the dam, in order to obtain an identical speed to the river bed. The problem of the dimensioning of a classic dissipation basin is in the determination of the necessary parameters for the dimensioning of this structure. This communication presents a simple graphical method, that is fast and complete, and a methodology which determines the main features of the hydraulic jump, necessary parameters for sizing the classic dissipation basin. This graphical method takes into account the constraints imposed by the reality of the terrain or the practice such as the one related to the topography of the site, the preservation of the environment equilibrium and the technical and economic side.This methodology is to impose the loss of head DH dissipated by the hydraulic jump as a hypothesis (free design) to determine all the others parameters of classical dissipation basin. We can impose the loss of head DH dissipated by the hydraulic jump that is equal to a selected value or to a certain percentage of the upstream total head created by the dam. With the parameter DH+ =(DH/k),(k: critical depth),the elaborate graphical representation allows to find the other parameters, the multiplication of these parameters by k gives the main characteristics of the hydraulic jump, necessary parameters for the dimensioning of classic dissipation basin.This solution is often preferred for sizing the dissipation basins of small concrete dams. The results verification and their comparison to practical data, confirm the validity and reliability of the elaborate graphical method.

Keywords: dimensioning, energy dissipation basin, hydraulic jump, protection of the environment

Procedia PDF Downloads 583
4949 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: axial deformation, free vibration, Galerkin finite element method, large amplitude, variational method

Procedia PDF Downloads 254
4948 Study of the Phenomenon of Collapse and Buckling the Car Body Frame

Authors: Didik Sugiyanto

Abstract:

Conditions that often occur in the framework of a particular vehicle at a car is a collision or collision with another object, an example of such damage is to the frame or chassis for the required design framework that is able to absorb impact energy. Characteristics of the material are influenced by the value of the stiffness of the material that need to be considered in choosing the material properties of the material. To obtain material properties that can be adapted to the experimental conditions tested the tensile and compression testing. In this study focused on the chassis at an angle of 150, 300, and 450. It is based on field studies that vehicle primarily for freight cars have a point of order light between 150 to 450. Research methods include design tools, design framework, procurement of materials and experimental tools, tool-making, the manufacture of the test framework, and the testing process, experiment is testing the power of the press to know the order. From this test obtained the maximum force on the corner of 150 was 569.76 kg at a distance of 16 mm, angle 300 is 370.3 kg at a distance of 15 mm, angle 450 is 391.71 kg at a distance of 28 mm. After reaching the maximum force the order will occur collapse, followed by a decrease in the next distance. It can be concluded that the greatest strain energy occurs at an angle of 150. So it is known that the frame at an angle of 150 produces the best level of security.

Keywords: buckling, collapse, body frame, vehicle

Procedia PDF Downloads 578
4947 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry

Authors: Balraju Vadlakonda, Narasimha Mangadoddy

Abstract:

The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.

Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy

Procedia PDF Downloads 510
4946 Influence of Shield Positions on Thermo/Fluid Performance of Pin Fin Heat Sink

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, I present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43 where energy is saved.

Keywords: shield, fin array, performance evaluation, heat transfer, energy

Procedia PDF Downloads 306
4945 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
4944 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376
4943 Using 3-Glycidoxypropyltrimethoxysilane Functionalized Silica Nanoparticles to Improve Flexural Properties of E-Glass/Epoxy Grid-Stiffened Composite Panels

Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh

Abstract:

Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silane coupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the fourier transform infrared spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3-GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. Also, 3-GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the grid-stiffened fibrous composite structures.

Keywords: isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties, energy absorption

Procedia PDF Downloads 248
4942 Evaluation of the Energy Performance and Emissions of an Aircraft Engine: J69 Using Fuel Blends of Jet A1 and Biodiesel

Authors: Gabriel Fernando Talero Rojas, Vladimir Silva Leal, Camilo Bayona-Roa, Juan Pava, Mauricio Lopez Gomez

Abstract:

The substitution of conventional aviation fuels with biomass-derived alternative fuels is an emerging field of study in the aviation transport, mainly due to its energy consumption, the contribution to the global Greenhouse Gas - GHG emissions and the fossil fuel price fluctuations. Nevertheless, several challenges remain as the biofuel production cost and its degradative effect over the fuel systems that alter the operating safety. Moreover, experimentation on full-scale aeronautic turbines are expensive and complex, leading to most of the research to the testing of small-size turbojets with a major absence of information regarding the effects in the energy performance and the emissions. The main purpose of the current study is to present the results of experimentation in a full-scale military turbojet engine J69-T-25A (presented in Fig. 1) with 640 kW of power rating and using blends of Jet A1 with oil palm biodiesel. The main findings are related to the thrust specific fuel consumption – TSFC, the engine global efficiency – η, the air/fuel ratio – AFR and the volume fractions of O2, CO2, CO, and HC. Two fuels are used in the present study: a commercial Jet A1 and a Colombian palm oil biodiesel. The experimental plan is conducted using the biodiesel volume contents - w_BD from 0 % (B0) to 50 % (B50). The engine operating regimes are set to Idle, Cruise, and Take-off conditions. The turbojet engine J69 is used by the Colombian Air Force and it is installed in a testing bench with the instrumentation that corresponds to the technical manual of the engine. The increment of w_BD from 0 % to 50 % reduces the η near 3,3 % and the thrust force in a 26,6 % at Idle regime. These variations are related to the reduction of the 〖HHV〗_ad of the fuel blend. The evolved CO and HC tend to be reduced in all the operating conditions when increasing w_BD. Furthermore, a reduction of the atomization angle is presented in Fig. 2, indicating a poor atomization in the fuel nozzle injectors when using a higher biodiesel content as the viscosity of fuel blend increases. An evolution of cloudiness is also observed during the shutdown procedure as presented in Fig. 3a, particularly after 20 % of biodiesel content in the fuel blend. This promotes the contamination of some components of the combustion chamber of the J69 engine with soot and unburned matter (Fig. 3). Thus, the substitution of biodiesel content above 20 % is not recommended in order to avoid a significant decrease of η and the thrust force. A more detail examination of the mechanical wearing of the main components of the engine is advised in further studies.

Keywords: aviation, air to fuel ratio, biodiesel, energy performance, fuel atomization, gas turbine

Procedia PDF Downloads 109
4941 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 140
4940 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 401
4939 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
4938 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications

Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava

Abstract:

The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.

Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation

Procedia PDF Downloads 31
4937 Synergistic Effects of the Substrate-Ligand Interaction in Metal-Organic Complexes on the De-electronation Kinetics of a Vitamin C Fuel Cell

Authors: Muskan Parmar, Musthafa Ottakam Thotiyl

Abstract:

The rising need for portable energy sources has led to advancements in direct liquid fuel cells (DLFCs) using various fuels like alcohol, ammonia, hydrazine, and vitamin C. Traditional precious metal catalysts improve reaction speeds but are expensive and prone to poisoning. Our study reveals how non-precious metal organometallic complexes, combined with smartly designed ligands, can significantly boost performance. The key is a unique interaction between the substrate (fuel) and the ligand, which creates a "dragging" effect that enhances reaction rates. By using this approach with a ferricyanide/ferrocyanide half-cell reaction, we developed a vitamin C fuel cell without precious metals. This fuel cell achieves an open circuit voltage of ∼950 mV, a peak power density of ∼97 mW cm⁻², and a peak current density of ∼215 mA cm⁻². Impressively, its performance is about 1.7 times better than traditional precious metal-based DLFCs. This highlights the potential of substrate ligand chemistry in the creation of sustainable DLFCs for efficient energy conversion.

Keywords: molecular electrocatalysts, vitamin C fuel cell, proton charge assembly, ferricyanide half-cell chemistry

Procedia PDF Downloads 21
4936 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 107
4935 Gas Injection Transport Mechanism for Shale Oil Recovery

Authors: Chinedu Ejike

Abstract:

The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing.

Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reserve

Procedia PDF Downloads 173
4934 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer

Procedia PDF Downloads 182
4933 Preliminary Study of the Cost-Effectiveness of Green Walls: Analyzing Cases from the Perspective of Life Cycle

Authors: Jyun-Huei Huang, Ting-I Lee

Abstract:

Urban heat island effect is derived from the reduction of vegetative cover by urban development. Because plants can improve air quality and microclimate, green walls have been applied as a sustainable design approach to cool building temperature. By using plants to green vertical surfaces, they decrease room temperature and, as a result, decrease the energy use for air conditioning. Based on their structures, green walls can be divided into two categories, green façades and living walls. A green façade uses the climbing ability of a plant itself, while a living wall assembles planter modules. The latter one is widely adopted in public space, as it is time-effective and less limited. Although a living wall saves energy spent on cooling, it is not necessarily cost-effective from the perspective of a lifecycle analysis. The Italian study shows that the overall benefit of a living wall is only greater than its costs after 47 years of its establishment. In Taiwan, urban greening policies encourage establishment of green walls by referring to their benefits of energy saving while neglecting their low performance on cost-effectiveness. Thus, this research aims at understanding the perception of appliers and consumers on the cost-effectiveness of their living wall products from the lifecycle viewpoint. It adopts semi-structured interviews and field observations on the maintenance of the products. By comparing the two results, it generates insights for sustainable urban greening policies. The preliminary finding shows that stakeholders do not have a holistic sense of lifecycle or cost-effectiveness. Most importantly, a living wall well maintained is often with high input due to the availability of its maintenance budget, and thus less sustainable. In conclusion, without a comprehensive sense of cost-effectiveness throughout a product’s lifecycle, it is very difficult for suppliers and consumers to maintain a living wall system while achieve sustainability.

Keywords: case study, maintenance, post-occupancy evaluation, vertical greening

Procedia PDF Downloads 265
4932 Microstructural Evidences for Exhaustion Theory of Low Temperature Creep in Martensitic Steels

Authors: Nagarjuna Remalli, Robert Brandt

Abstract:

Down-sizing of combustion engines in automobiles are prevailed owing to required increase in efficiency. This leads to a stress increment on valve springs, which affects their intended function due to an increase in relaxation. High strength martensitic steels are used for valve spring applications. Recent investigations unveiled that low temperature creep (LTC) in martensitic steels obey a logarithmic creep law. The exhaustion theory links the logarithmic creep behavior to an activation energy which is characteristic for any given time during creep. This activation energy increases with creep strain due to barriers of low activation energies exhausted during creep. The assumption of the exhaustion theory is that the material is inhomogeneous in microscopic scale. According to these assumptions it is anticipated that small obstacles (e. g. ε–carbides) having a wide range of size distribution are non-uniformly distributed in the materials. X-ray diffraction studies revealed the presence of ε–carbides in high strength martensitic steels. In this study, high strength martensitic steels that are crept in the temperature range of 75 – 150 °C were investigated with the aid of a transmission electron microscope for the evidence of an inhomogeneous distribution of obstacles having different size to examine the validation of exhaustion theory.

Keywords: creep mechanisms, exhaustion theory, low temperature creep, martensitic steels

Procedia PDF Downloads 263
4931 Real Time Implementation of Efficient DFIG-Variable Speed Wind Turbine Control

Authors: Fayssal Amrane, Azeddine Chaiba, Bruno Francois

Abstract:

In this paper, design and experimental study based on Direct Power Control (DPC) of DFIG is proposed for Stand-alone mode in Variable Speed Wind Energy Conversion System (VS-WECS). The proposed IDPC method based on robust IP (Integral-Proportional) controllers in order to control the Rotor Side Converter (RSC) by the means of the rotor current d-q axes components (Ird* and Irq*) of Doubly Fed Induction Generator (DFIG) through AC-DC-AC converter. The implementation is realized using dSPACE dS1103 card under Sub and Super-synchronous operations (means < and > of the synchronous speed “1500 rpm”). Finally, experimental results demonstrate that the proposed control using IP provides improved dynamic responses, and decoupled control of the wind turbine has driven DFIG with high performances (good reference tracking, short response time and low power error) despite for sudden variation of wind speed and rotor references currents.

Keywords: Direct Power Control (DPC), Doubly fed induction generator (DFIG), Wind Energy Conversion System (WECS), Experimental study.

Procedia PDF Downloads 126
4930 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 86
4929 Social Capital and Adoption of Sustainable Management Practices of Non Timber Forest Product in Cameroon

Authors: Eke Bala Sophie Michelle

Abstract:

The renewable resource character of NTFPs is an opportunity to its sustainability, this study analyzed the role of social capital in the adoption of sustainable management practices of NTFPs by households in the community forest (CF) Morikouali-ye. The analysis shows that 67% of households surveyed perceive the level of degradation of NTFPs in their CF as time passes and are close to 74% for adoption of sustainable management practices of NTFPs that are domestication, sustainable management of the CF, the logging ban trees and uprooting plants, etc. 26% refused to adopt these practices estimate that, at 39% it is better to promote logging in the CF. The estimated probit model shows that social capital through trust, solidarity and social inclusion significantly influences the probability of households to adopt sustainable NTFP management practices. In addition, age, education level and income from the sale of NTFPs have a significant impact on the probability of adoption. The probability of adoption increases with the level of education and confidence among households. So should they be animated by a spirit of solidarity and trust and not let a game of competition for sustainable management of NTFPs in their CF.

Keywords: community forest, social capital, NTFP, trust, solidarity, social inclusion, sustainable management

Procedia PDF Downloads 370
4928 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 63
4927 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions

Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison

Abstract:

Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.

Keywords: exergy, hydrates, optimization, phase change material, thermodynamics

Procedia PDF Downloads 131
4926 Impact of Dietary Rumen Protected Choline on Transition Dairy Cows’ Productive Performance

Authors: Mohamed Ahmed Tony, Fayez Abaza

Abstract:

The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition and some blood metabolites were evaluated in transition dairy cows. Forty multiparous cows were blocked into 20 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 2 weeks before and until 8 weeks after calving. Both groups received the same basal diet as total mixed ration. Additionally, 50 g of a rumen-protected choline supplement (25% rumen protected choline chloride) was added individually in the feed. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at week 2 before calving, d 1, d 4, d 7, d 10, week 2, week 3, and week 8 after calving. Glucose, triglycerids, nonesterified fatty acids, and β-hydroxybutyric acid in blood were analysed. The results revealed that choline supplementation increased DM intake from 16.5 to 18.0 kg/d and, hence, net energy intake from 99.2 to 120.5 MJ/d at the intercept of the lactation curve at 1 day in milk. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.11 to 1.22 kg/d at the intercept of the lactation curve. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 day in milking, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation decreased the concentration of blood triglycerids during the first 4 wk after parturition. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight and body condition score. Results from this study suggest that fat metabolism in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.

Keywords: choline, dairy cattle, transition cow, triglycerids

Procedia PDF Downloads 514
4925 Overnutrition in Adolescents and Its Associated Factors in Dale District Schools in Ethiopia: A Cross-Sectional Study

Authors: Beruk Berhanu Desalegn, Tona Diddana, Alemneh Daba

Abstract:

Objective: The aim of this study was to assess the magnitude and determinants of overnutrition among school going adolescents from Dale District of Ethiopia. Methods: An institution-based cross-sectional study was done between November and December 2020. A total of 333 school going adolescents aged 10-19 years were participated. Socio-demographic, lifestyle, physical activity level, an estimated individual dietary energy intake; and height and weight data were collected. Body Mass Index for age (BAZ) was computed. Results: The magnitude of over-nutrition was 7.2% (10.8% in urban vs. 3.6% in rural). Lack of adequate playing area (AOR=2.53, 95% CI:1.02, 6.26), being an urban resident (AOR=3.05, 95% CI:1.12, 8.29), having more energy intake than expenditure (AOR=9.47, 95% CI:1.58, 56.80), ever consumed fast foods a month before the survey (AOR=2.60, 95% CI:1.93, 6.83), having moderate physical activity (PA) (AOR =9.28, 95% CI: 6.70, 71.63), low PA (AOR=7.95, 95% CI:1.12, 56.72), and having snack between meals (AOR=3.32, 95% CI:1.15, 9.58) were positively associated with over-nutrition. Conclusion: The magnitude of over-nutrition among school going adolescents was lower compared to previous reports in Ethiopia. Sedentary lifestyles, excess calorie intake, not having adequate playing areas in the schools, and having snacks between meals were statistically predicted determinants for over-nutrition in the study area.

Keywords: adolescent, over-nutrition, school, Ethiopia

Procedia PDF Downloads 66
4924 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78