Search results for: gender specific data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31764

Search results for: gender specific data

28104 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 96
28103 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 407
28102 Development of a Research Platform to Revitalize People-Forest Relationship Through a Cycle of Architectural Embodiments

Authors: Hande Ünlü, Yu Morishita

Abstract:

The total area of forest land in Japan accounts for 67% of the national land; however, despite this wealth and hundred years history of silviculture, today Japanese forestry faces socio-economic stagnation in forestry. While the growing gap in the people-forest relationship causes the depopulation of many forest villages, this paper introduces a methodology aiming to develop a place-specific approach in revitalizing this relationship. The paper focuses on a case study from Taiki town in the Hokkaido region to analyze the place's specific socio-economic requirements through interviews and workshops with the local experts, researchers, and stakeholders. Based on the analyzed facts, a master outline of design requirements is developed to produce locally sourced architectural embodiments that aim to act as a unifying element between the forests and the people of Taiki town. In parallel, the proposed methodology aims to generate a cycle of research feed and a researcher retreat, a definition given by Memu Earth Lab to the researchers' stay at Memu in Taiki town for a defined period to analyze local resources, for the continuous improvement of the introduced methodology to revitalize the interaction between people and forest through architecture.

Keywords: architecture, Japanese forestry, local timber, people-forest relationship, research platform

Procedia PDF Downloads 179
28101 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 238
28100 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 466
28099 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 128
28098 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 403
28097 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 148
28096 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 60
28095 Changing New York Financial Clusters in the 2000s: Modeling the Impact and Policy Implication of the Global Financial Crisis

Authors: Silvia Lorenzo, Hongmian Gong

Abstract:

With the influx of research assessing the economic impact of the global financial crisis of 2007-8, a spatial analysis based on empirical data is needed to better understand the spatial significance of the financial crisis in New York, a key international financial center also considered the origin of the crisis. Using spatial statistics, the existence of financial clusters specializing in credit and securities throughout the New York metropolitan area are identified for 2000 and 2010, the time period before and after the height of the global financial crisis. Geographically Weighted Regressions are then used to examine processes underlying the formation and movement of financial geographies across state, county and ZIP codes of the New York metropolitan area throughout the 2000s with specific attention to tax regimes, employment, household income, technology, and transportation hubs. This analysis provides useful inputs for financial risk management and public policy initiatives aimed at addressing regional economic sustainability across state boundaries, while also developing the groundwork for further research on a spatial analysis of the global financial crisis.

Keywords: financial clusters, New York, global financial crisis, geographically weighted regression

Procedia PDF Downloads 312
28094 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 247
28093 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)

Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine

Abstract:

Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca

Procedia PDF Downloads 116
28092 The Influence of Minority Stress on Depression among Thai Lesbian, Gay, Bisexual, and Transgender Adults

Authors: Priyoth Kittiteerasack, Alana Steffen, Alicia K. Matthews

Abstract:

Depression is a leading cause of the worldwide burden of disability and disease burden. Notably, lesbian, gay, bisexual, and transgender (LGBT) populations are more likely to be a high-risk group for depression compared to their heterosexual and cisgender counterparts. To date, little is known about the rates and predictors of depression among Thai LGBT populations. As such, the purpose of this study was to: 1) measure the prevalence of depression among a diverse sample of Thai LGBT adults and 2) determine the influence of minority stress variables (discrimination, victimization, internalized homophobia, and identity concealment), general stress (stress and loneliness), and coping strategies (problem-focused, avoidance, and seeking social support) on depression outcomes. This study was guided by the Minority Stress Model (MSM). The MSM posits that elevated rates of mental health problems among LGBT populations stem from increased exposures to social stigma due to their membership in a stigmatized minority group. Social stigma, including discrimination and violence, represents unique sources of stress for LGBT individuals and have a direct impact on mental health. This study was conducted as part of a larger descriptive study of mental health among Thai LGBT adults. Standardized measures consistent with the MSM were selected and translated into the Thai language by a panel of LGBT experts using the forward and backward translation technique. The psychometric properties of translated instruments were tested and acceptable (Cronbach’s alpha > .8 and Content Validity Index = 1). Study participants were recruited using convenience and snowball sampling methods. Self-administered survey data were collected via an online survey and via in-person data collection conducted at a leading Thai LGBT organization. Descriptive statistics and multivariate analyses using multiple linear regression models were conducted to analyze study data. The mean age of participants (n = 411) was 29.5 years (S.D. = 7.4). Participants were primarily male (90.5%), homosexual (79.3%), and cisgender (76.6%). The mean score for depression of study participant was 9.46 (SD = 8.43). Forty-three percent of LGBT participants reported clinically significant levels of depression as measured by the Beck Depression Inventory. In multivariate models, the combined influence of demographic, stress, coping, and minority stressors explained 47.2% of the variance in depression scores (F(16,367) = 20.48, p < .001). Minority stressors independently associated with depression included discrimination (β = .43, p < .01) victimization (β = 1.53, p < .05), and identity concealment (β = -.54, p < .05). In addition, stress (β = .81, p < .001), history of a chronic disease (β = 1.20, p < .05), and coping strategies (problem-focused coping β = -1.88, p < .01, seeking social support β = -1.12, p < .05, and avoidance coping β = 2.85, p < .001) predicted depression scores. The study outcomes emphasized that minority stressors uniquely contributed to depression levels among Thai LGBT participants over and above typical non-minority stressors. Study findings have important implications for nursing practice and the development of intervention research.

Keywords: depression, LGBT, minority stress, sexual and gender minority, Thailand

Procedia PDF Downloads 130
28091 Demographic Characteristics and Factors Affecting Mortality in Pediatric Trauma Patients Who Are Admitted to Emergency Service

Authors: Latif Duran, Erdem Aydin, Ahmet Baydin, Ali Kemal Erenler, Iskender Aksoy

Abstract:

Aim: In this retrospective study, we aim to contribute to the literature by presenting the proposals for taking measures to reduce the mortality by examining the demographic characteristics of the pediatric age group patients presenting with trauma and the factors that may cause mortality Material and Method: This study has been performed by retrospectively investigating the data obtained from the patient files and the hospital automation registration system of the pediatric trauma patients who applied to the Adult Emergency Department of the Ondokuz Mayıs University Medical Faculty between January 1, 2016, and December 31, 2016. Results: 289 of 415 patients involved in our study, were males. The median age was 11.3 years. The most common trauma mechanism was falling from the high. A significant statistical difference was found on the association between trauma mechanisms and gender. An increase in the number of trauma cases was found especially in the summer months. The study showed that thoracic and abdominal trauma was relevant to the increased mortality. Computerized tomography was the most common diagnostic imaging modality. The presence of subarachnoid hemorrhage has increased the risk of mortality by 62.3 fold. Eight of the patients (1.9%) died. Scoring systems were statistically significant to predict mortality. Conclusion: Children are vulnerable to trauma because of their unique anatomical and physiological differences compared to adult patient groups. It will be more successful in the mortality rate and in the post-traumatic healing process by administering the patient triage fast and most appropriate trauma centers in the prehospital period, management of the critical patients with the scoring systems and management with standard treatment protocols

Keywords: emergency service, pediatric patients, scoring systems, trauma, age groups

Procedia PDF Downloads 199
28090 The Impact of CSR Satisfaction on Employee Commitment

Authors: Silke Bustamante, Andrea Pelzeter, Andreas Deckmann, Rudi Ehlscheidt, Franziska Freudenberger

Abstract:

Many companies increasingly seek to enhance their attractiveness as an employer to bind their employees. At the same time, corporate responsibility for social and ecological issues seems to become a more important part of an attractive employer brand. It enables the company to match the values and expectations of its members, to signal fairness towards them and to increase its brand potential for positive psychological identification on the employees’ side. In the last decade, several empirical studies have focused this relationship, confirming a positive effect of employees’ CSR perception and their affective organizational commitment. The current paper aims to take a slightly different view by analyzing the impact of another factor on commitment: the weighted employee’s satisfaction with the employer CSR. For that purpose, it is assumed that commitment levels are rather a result of the fulfillment or disappointment of expectations. Hence, instead of merely asking how CSR perception affects commitment, a more complex independent variable is taken into account: a weighted satisfaction construct that summarizes two different factors. Therefore, the individual level of commitment contingent on CSR is conceptualized as a function of two psychological processes: (1) the individual significance that an employee ascribes to specific employer attributes and (2) the individual satisfaction based on the fulfillment of expectation that rely on preceding perceptions of employer attributes. The results presented are based on a quantitative survey that was undertaken among employees of the German service sector. Conceptually a five-dimensional CSR construct (ecology, employees, marketplace, society and corporate governance) and a two-dimensional non-CSR construct (company and workplace) were applied to differentiate employer characteristics. (1) Respondents were asked to indicate the importance of different facets of CSR-related and non-CSR-related employer attributes. By means of a conjoint analysis, the relative importance of each employer attribute was calculated from the data. (2) In addition to this, participants stated their level of satisfaction with specific employer attributes. Both indications were merged to individually weighted satisfaction indexes on the seven-dimensional levels of employer characteristics. The affective organizational commitment of employees (dependent variable) was gathered by applying the established 15-items Organizational Commitment Questionnaire (OCQ). The findings related to the relationship between satisfaction and commitment will be presented. Furthermore, the question will be addressed, how important satisfaction with CSR is in relation to the satisfaction with other attributes of the company in the creation of commitment. Practical as well as scientific implications will be discussed especially with reference to previous results that focused on CSR perception as a commitment driver.

Keywords: corporate social responsibility, organizational commitment, employee attitudes/satisfaction, employee expectations, employer brand

Procedia PDF Downloads 269
28089 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 46
28088 Time-Evolving Wave Packet in Phase Space

Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto

Abstract:

In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.

Keywords: chaotic billiard, Poincaré section, scar, wave packet

Procedia PDF Downloads 453
28087 Patterns of Self-Reported Overweight, Obesity, and Other Chronic Diseases Among University Students in the United Arab Emirates: A Cross-Sectional Study

Authors: Maryam M. Bashir, Luai A. Ahmed, Meera R. Alshamsi, Sara Almahrooqi, Taif Alyammahi, Shooq A. Alshehhi, Waad I. Alhammadi, Fatima H. Alhammadi, Hind A. Alhosani, Rami H. Al-Rifai, Fatma Al-Maskari

Abstract:

Obesity in the Middle East and North Africa (MENA) region has exponentially increased over the past five decades due to rapid urbanization and unhealthy lifestyle changes. It has been well established that overweight and obesity increase the risk of non-communicable diseases (NCDs) and are the leading cause of mortality and economic burden locally, and globally. In the United Arab Emirates (UAE), there is a growing epidemic of obesity and other chronic diseases like type 2 diabetes mellitus and cardiovascular diseases. Prevalence of overweight and obesity in UAE range up to 70% depending on the group being studied. Hence, there is a need to explore their patterns in the country for more targeted and responsive interventions. Our study aimed to explore the patterns of overweight and obesity and some self-reported chronic diseases among university students in Abu Dhabi, the capital city of UAE. A validated online self-administered questionnaire was used to collect data from UAE University (UAEU) students, 18years and above, from August to September 2021. Students’ characteristics were summarized using appropriate descriptive statistics. Overweight, obesity and self-reported chronic diseases were described and compared between male and female students using chi-square and t tests. Other associated factors were also explored in relation to overweight and obesity. All analyses were conducted using STATA statistical software version 16.1 (StataCorp LLC, College Station, TX, USA). 902 students participated in the study. 79.8% were females and mean age was 21.90 ± 5.19 years. Majority of the respondents were undergraduate students (80.71%). The prevalence of self-reported chronic diseases was 22.95%. Obesity (BMI≥30kg/m2), Diabetes Mellitus, and Asthma/Allergies were the commonest diseases (12.48%, 4.21% & 3.22%, respectively). Approximately 5% of the students reported more than one chronic disease. Out of the 833 participating students who had complete weight and height data, prevalence of overweight and obesity was 34.81% (22.33% and 12.48%, respectively). More than half of the male students (54.36%) were overweight or obese. This is significantly higher than in female students (30.56%, p=0.001). Overweight/obesity when compared to normal weight is associated with increasing mean age [23.40 vs 21.01, respectively (p=0.001)]. In addition to gender and age, being married [57.63% vs 31.05% (p=0.001)], being a postgraduate student [51.59% vs 30.92% (p=0.001)] and having two or more chronic diseases [65.85% vs 33.21% (p=0.001)] were also significantly associated with overweight/obesity. Our study showed that almost a quarter of the participating university students reported at least one chronic disease. Obesity was the commonest and more than 1 in 3 students were either overweight or obese. This shows the need for intensive health promotion and screening programs on obesity and other chronic diseases to meet the health needs of these students. This study is also a basis for further research, especially qualitative, to explore the relevant risk factors and risk groups for more targeted interventions.

Keywords: chronic disease, obesity, overweight, students, United Arab Emirates

Procedia PDF Downloads 124
28086 Integrating ICT in Teaching and Learning English in the Algerian Classroom

Authors: A. Tahar Djebbar

Abstract:

Modern technologies have penetrated all spheres of human life, education being one of them. This paper focuses the attention on the integration of technology-based education in the Algerian classroom in teaching foreign languages. It sheds light on a specific area of ICT application: ICT in English learning and teaching. Some Algerian teachers or tutors of English face many challenges among which the lack of teaching materials which are indispensable for transmitting knowledge to learners. Thus, they find themselves compelled to use online e-books or download them in PDF form to support their lessons. Teachers even download such teaching materials like pictures, videos, audios, podcasts, and flash cards from the internet and store them in their Flash USBs to shape up the teaching-learning conditions. They use computers, data shows, and the internet so as to facilitate the teaching–learning process in the classroom. Hence, technology has become a must in the Algerian classroom especially in teaching English which has become a very important language in a national and an international level. This study aims at showing that Algerian tutors/teachers who take up the challenge of getting involved in the technology-enhanced language learning and teaching in the Algerian schools and universities face many obstacles.

Keywords: computer, communication, English, internet, learners, language acquisition, teaching, technology

Procedia PDF Downloads 649
28085 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 337
28084 Reconceptualizing Evidence and Evidence Types for Digital Journalism Studies

Authors: Hai L. Tran

Abstract:

In the digital age, evidence-based reporting is touted as a best practice for seeking the truth and keeping the public well-informed. Journalists are expected to rely on evidence to demonstrate the validity of a factual statement and lend credence to an individual account. Evidence can be obtained from various sources, and due to a rich supply of evidence types available, the definition of this important concept varies semantically. To promote clarity and understanding, it is necessary to break down the various types of evidence and categorize them in a more coherent, systematic way. There is a wide array of devices that digital journalists deploy as proof to back up or refute a truth claim. Evidence can take various formats, including verbal and visual materials. Verbal evidence encompasses quotes, soundbites, talking heads, testimonies, voice recordings, anecdotes, and statistics communicated through written or spoken language. There are instances where evidence is simply non-verbal, such as when natural sounds are provided without any verbalized words. On the other hand, other language-free items exhibited in photos, video footage, data visualizations, infographics, and illustrations can serve as visual evidence. Moreover, there are different sources from which evidence can be cited. Supporting materials, such as public or leaked records and documents, data, research studies, surveys, polls, or reports compiled by governments, organizations, and other entities, are frequently included as informational evidence. Proof can also come from human sources via interviews, recorded conversations, public and private gatherings, or press conferences. Expert opinions, eye-witness insights, insider observations, and official statements are some of the common examples of testimonial evidence. Digital journalism studies tend to make broad references when comparing qualitative versus quantitative forms of evidence. Meanwhile, limited efforts are being undertaken to distinguish between sister terms, such as “data,” “statistical,” and “base-rate” on one side of the spectrum and “narrative,” “anecdotal,” and “exemplar” on the other. The present study seeks to develop the evidence taxonomy, which classifies evidence through the quantitative-qualitative juxtaposition and in a hierarchical order from broad to specific. According to this scheme, data, statistics, and base rate belong to the quantitative evidence group, whereas narrative, anecdote, and exemplar fall into the qualitative evidence group. Subsequently, the taxonomical classification arranges data versus narrative at the top of the hierarchy of types of evidence, followed by statistics versus anecdote and base rate versus exemplar. This research reiterates the central role of evidence in how journalists describe and explain social phenomena and issues. By defining the various types of evidence and delineating their logical connections it helps remove a significant degree of conceptual inconsistency, ambiguity, and confusion in digital journalism studies.

Keywords: evidence, evidence forms, evidence types, taxonomy

Procedia PDF Downloads 69
28083 Correlates of Coping in Individuals with Tinnitus

Authors: Antonio Oliveira, Rute F. Meneses, Nuno Trigueiros-Cunha

Abstract:

Tinnitus is commonly defined as an aberrant perception of sound without external stimulus. It is a chronic condition, with consequences on the QOL. The coping strategies used were not always effective and coping was identified as a predictor of QOL in individuals with tinnitus, which reinforces the idea that in health the use of effective coping styles should be promoted. This work intend to verify relations between coping strategies assessed by BriefCope in subjects with tinnitus and variables such as gender, age and severity of tinnitus measured by THI and the Visual Analogue Scale and also hearing and hyperacusis. The results indicate that there are any statistically significant relationships between the variables assessed in relation to the results of BriefCope except in the Visual Analogue Scale. These results, indicating no relationship between almost all variables, reinforce the need for further study of coping strategies use by these patients.

Keywords: Brief Cope, coping strategies, quality of live, THI, Tinnitus

Procedia PDF Downloads 524
28082 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 263
28081 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 481
28080 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 298
28079 Investigating the Organizational Capacity of Communities Affecting Water Supply Resilience

Authors: Behrooz Balaei, Suzanne Wilkinson, Regan Potangaroa, Larry Abel, Philip McFarlane

Abstract:

Water supply system failure has serious direct and indirect effects on people wellbeing. Post-disaster water system serviceability depends on a variety of factors from technical characteristics to social, economic, and organizational attributes of communities. This paper tests the organizational factors affecting water supply resilience to outline how these factors contributed to previous disasters. To do so, a framework is briefly introduced in this study to provide a clear guide to identify the significant relevant organizational factors. Then the factors affecting water serviceability following a disaster are outlines. Next, these factors are measured in the case of Tropical Cyclone Pam, which hit Vanuatu in March 2015. Reviewing the existing literature has also been carried out to obtain a comprehensive understanding of the background A site visit and a series of interviews have also been undertaken following the cyclone to collect site-specific data and information. In the end, the organizational factors were ranked to enable decision makers to identify significance of each factor compared to the others.

Keywords: water supply, resilience, organizational capacity, Vanuatu, Tropical Cyclone Pam

Procedia PDF Downloads 131
28078 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings

Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof

Abstract:

False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.

Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes

Procedia PDF Downloads 309
28077 The Nation as Brand: Postcolonial Construction of National Identity in Late 20th/21st Century Qatar

Authors: Ryunhye Kim

Abstract:

Despite its relatively short history as an independent state, Qatar has emerged as a highly regarded Gulf state and global power. Since its independence in September 1971, the state has employed deliberate policy initiatives designed to put Qatar on the map and distinguish it from other Gulf states. Because Qatar and its neighbors are resource-poor apart from energy, whoever is first to introduce a unique aspect of branding not only takes the lead but assumes what is often an insurmountable advantage. This study examines three specific modes of branding undertaken by Qatar: (1) energy policies to utilize its natural gas to become a dominant supplier; (2) the deliberate construction of a distinct cultural brand utilizing sports, architecture, museums, and media; and (3) ‘niche diplomacy’ to serve as a mediator in regional and intra-national conflicts, especially as interlocutor between the United States and Arab regimes and Muslim groups. Gleaning data from a range of sources, this study analyzes the effectiveness and significance of Qatar’s place branding on the global stage, as well as potential disadvantages and limits in this branding, including problems encountered before and after the ‘Qatar crisis.’

Keywords: national branding, national-identity, Qatar, soft-power

Procedia PDF Downloads 153
28076 Efforts to Revitalize Piipaash Language: An Explorative Study to Develop Culturally Appropriate and Contextually Relevant Teaching Materials for Preschoolers

Authors: Shahzadi Laibah Burq, Gina Scarpete Walters

Abstract:

Piipaash, representing one large family of North American languages, Yuman, is reported as one of the seriously endangered languages in the Salt River Pima-Maricopa Indian Community of Arizona. In a collaborative venture between Arizona State University (ASU) and Salt River Pima-Maricopa Indian Community (SRPMIC), efforts have been made to revitalize and preserve the Piipaash language and its cultural heritage. The present study is one example of several other language documentation and revitalization initiatives that Humanities Lab ASU has taken. This study was approved to receive a “Beyond the lab” grant after the researchers successfully created a Teaching Guide for Early Childhood Piipaash storybook during their time working in the Humanities Lab. The current research is an extension of the previous project and focuses on creating customized teaching materials and tools for the teachers and parents of the students of the Early Enrichment Program at SRPMIC. However, to determine and maximize the usefulness of the teaching materials with regards to their reliability, validity, and practicality in the given context, this research aims to conduct Environmental Analysis and Need Analysis. Environmental Analysis seeks to evaluate the Early Enrichment Program situation and Need Analysis to investigate the specific and situated requirements of the teachers to assist students in building target language skills. The study employs a qualitative methods approach for the collection of the data. Multiple data collection strategies are used concurrently to gather information from the participants. The research tools include semi-structured interviews with the program administrators and teachers, classroom observations, and teacher shadowing. The researchers utilize triangulation of the data to maintain validity in the process of data interpretation. The preliminary results of the study show a need for culturally appropriate materials that can further the learning of students of the target language as well as the culture, i.e., clay pots and basket-making materials. It was found that the course and teachers focus on developing the Listening and Speaking skills of the students. Moreover, to assist the young learners beyond the classroom, the teachers could make use of send-home teaching materials to reinforce the learning (i.e., coloring books, including illustrations of culturally relevant animals, food, and places). Audio language resources are also identified as helpful additional materials for the parents to assist the learning of the kids.

Keywords: indigenous education, materials development, need analysis, piipaash language revitalizaton

Procedia PDF Downloads 91
28075 Equity And Inclusivity In Sustainable Urban Planning: Addressing Social Disparities In Eco-City Development

Authors: Olayeye Olubunmi Shola

Abstract:

Amidst increasing global environmental concerns, sustainable urban planning has emerged as a vital strategy in counteracting the negative impacts of urbanization on the environment. However, the emphasis on sustainability often disregards crucial elements of fairness and equal participation within urban settings. This abstract presents a comprehensive overview of the challenges, objectives, significance, and methodologies for addressing social inequalities in the development of eco-cities, with a specific focus on Abuja, Nigeria. Sustainable urban planning, particularly in the context of developing eco-cities, aims to construct cities prioritizing environmental sustainability and resilience. Nonetheless, a significant gap exists in addressing the enduring social disparities within these initiatives. Equitable distribution of resources, access to services, and social inclusivity are essential components that must be integrated into urban planning frameworks for cities that are genuinely sustainable and habitable. Abuja, the capital city of Nigeria, provides a distinctive case for examining the intersection of sustainability and social justice in urban planning. Despite the urban development, Abuja grapples with challenges such as socio-economic disparities, unequal access to essential services, and inadequate housing among its residents. Recognizing and redressing these disparities within the framework of eco-city development is critical for nurturing an inclusive and sustainable urban environment. The primary aim of this study is to scrutinize and pinpoint the social discrepancies within Abuja's initiatives for eco-city development. Specific objectives include: Evaluating the current socio-economic landscape of Abuja to identify disparities in resource, service, and infrastructure access. Comprehending the existing sustainable urban planning initiatives and their influence on social fairness. Suggesting strategies and recommendations to improve fairness and inclusivity within Abuja's plans for eco-city development. This research holds substantial importance for urban planning practices and policy formulation, not only in Abuja but also on a global scale. By highlighting the crucial role of social equity and inclusivity in the development of eco-cities, this study aims to provide insights that can steer more comprehensive, people-centered urban planning practices. Addressing social disparities within sustainability initiatives is crucial for achieving genuinely sustainable and fair urban spaces. The study will employ qualitative and quantitative methodologies. Data collection will involve surveys, interviews, and observations to capture the diverse experiences and perspectives of various social groups within Abuja. Furthermore, quantitative data on infrastructure, service access, and socio-economic indicators will be collated from government reports, academic sources, and non-governmental organizations. Analytical tools such as Geographic Information Systems (GIS) will be utilized to map and visualize spatial disparities in resource allocation and service access. Comparative analyses and case studies of successful interventions in other cities will be conducted to derive applicable strategies for Abuja's context. In conclusion, this study aims to contribute to the discourse on sustainable urban planning by advocating for equity and inclusivity in the development of eco-cities. By centering on Abuja as a case study, it aims to provide practical insights and solutions for the creation of more fair and sustainable urban environments.

Keywords: fairness, sustainability, geographical information system, equity

Procedia PDF Downloads 85