Search results for: dynamic voltage restorer (DVR)
1450 Timing and Probability of Presurgical Teledermatology: Survival Analysis
Authors: Felipa de Mello-Sampayo
Abstract:
The aim of this study is to undertake, from patient’s perspective, the timing and probability of using teledermatology, comparing it with a conventional referral system. The dynamic stochastic model’s main value-added consists of the concrete application to patients waiting for dermatology surgical intervention. Patients with low health level uncertainty must use teledermatology treatment as soon as possible, which is precisely when the teledermatology is least valuable. The results of the model were then tested empirically with the teledermatology network covering the area served by the Hospital Garcia da Horta, Portugal, links the primary care centers of 24 health districts with the hospital’s dermatology department via the corporate intranet of the Portuguese healthcare system. Health level volatility can be understood as the hazard of developing skin cancer and the trend of health level as the bias of developing skin lesions. The results of the survival analysis suggest that the theoretical model can explain the use of teledermatology. It depends negatively on the volatility of patients' health, and positively on the trend of health, i.e., the lower the risk of developing skin cancer and the younger the patients, the more presurgical teledermatology one expects to occur. Presurgical teledermatology also depends positively on out-of-pocket expenses and negatively on the opportunity costs of teledermatology, i.e., the lower the benefit missed by using teledermatology, the more presurgical teledermatology one expects to occur.Keywords: teledermatology, wait time, uncertainty, opportunity cost, survival analysis
Procedia PDF Downloads 1261449 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks
Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short
Abstract:
With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB
Procedia PDF Downloads 341448 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran
Authors: Sara Jelodarian
Abstract:
Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.Keywords: develop, production markets, progress, strategic role, technology
Procedia PDF Downloads 1171447 Role of Tourism in Increasing of Price of Land and Housing in Iran: Case Study of Shahmirzad City
Authors: Hamidreza Joodaki, Sara Farzaneh, Jaleh Afshar Qhazvin
Abstract:
Tourism industry is considered as the greatest and most various industry in the world. Most of these countries know this dynamic industry as main source of income, occupation, growth of private sector and development of infrastructure. One of the old methods of investment in countries such as Iran have transitional economy, is buying land and house, sometimes is resulted to high profit and of course for this reason hustler's are very interested in this background. Nowadays buying and selling land in the areas with pleasant climate in our country is considered. Since, Shahmirzad is a city with fair and desired environmental attractions is located in the border of deserted cities, mainly has special climatic position and these conditions are resulted to attraction of passenger, tourist for passing their leisure hours from Semnan and other cities of the area and from other provinces in hot seasons and with regard to these suitable conditions in the city buying land and housing also have been considered by most of residents of Semnan and cities around Shahmirzad by now. The aim of present research is investigation the role of tourism in increasing price of land and housing in Shahmirzad city. By studying on price of land and housing especially in central area, that gardens of the city are located in this area, we have concluded that role of tourism have caused in price of land and housing specially these prices in central and old areas are more expensive than towns around the city.Keywords: tourism, climate conditions, price of land and housing, Shahmirzad
Procedia PDF Downloads 2971446 The Role of Sustainable Development in the Design and Planning of Smart Cities Using GIS Techniques: Models of Arab Cities
Authors: Ahmed M. Jihad
Abstract:
The paper presents the concept of sustainable development, and the role of geographic techniques in the design, planning and presentation of maps of smart cities with geographical vision, and the identification of programs and tools, and models of maps of Arab cities, is the problem of research in how to apply, process and experience these programs? What is the role of geographic techniques in planning and mapping the optimal place for these cities? The paper proposes an addition to the designs of Iraqi cities, as it can be developed in the future to serve as a model for interactive smart cities by developing its services. The importance of this paper stems from the concept of sustainable development dynamic which has become a method of development imposed by the present era in rapid development to achieve social balance and specialized programs in draw paper argues that ensuring sustainable development is achieved through the use of information technology. The paper will follow the theoretical presentation of the importance of the concept of development, design tools and programs. The paper follows the method of analysis of modern systems (System Analysis Approach) through the latest programs will provide results can be said that the new Iraqi cities can be developed with smart technologies, like some of the Arab and European cities that were newly created through the introduction of international investment, and therefore Plans can be made to select the best programs in manufacturing and producing maps and smart cities in the future.Keywords: geographic techniques, planning the cities, smart cities, sustainable development
Procedia PDF Downloads 2101445 Damage to Strawberries Caused by Simulated Transport
Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni
Abstract:
The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds
Procedia PDF Downloads 4251444 Supply Chain Resource Optimization Model for E-Commerce Pure Players
Authors: Zair Firdaous, Fourka Mohamed, Elfelsoufi Zoubir
Abstract:
The arrival of e-commerce has changed the supply chain management on the operational level as well as on the organization and strategic and even tactical decisions of the companies. The optimization of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. Every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource in customized online shopping service mode. Then, we realized an optimization model and algorithm for the development based on the analysis of the of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.Keywords: supply chain resource, e-commerce, pure-players, optimization
Procedia PDF Downloads 2481443 Plasma Arc Burner for Pulverized Coal Combustion
Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava
Abstract:
Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.Keywords: coal combustion, plasma arc, plasma torches, pulverized coal
Procedia PDF Downloads 1611442 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method
Authors: W. Swiderski
Abstract:
In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.Keywords: composite material, ultrasonic, infrared thermography, non-destructive testing
Procedia PDF Downloads 2951441 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser
Authors: Moustafa Ahmed, Fumio Koyama
Abstract:
Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.Keywords: chirp, linewidth, optical feedback, semiconductor laser
Procedia PDF Downloads 4811440 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2251439 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova
Authors: Abadou Yacine, Faid Hayette
Abstract:
Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding
Procedia PDF Downloads 591438 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid
Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug
Abstract:
In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability
Procedia PDF Downloads 1491437 Bending Tests for the Axial Load Identifications in Space Structures with Unknown Boundary Conditions
Authors: M. Bonopera, N. Tullini, C. C. Chen, T. K. Lin, K. C. Chang
Abstract:
This paper presents the extension of a static method for the axial load identifications in prismatic beam-columns with uncertain length and unknown boundary conditions belonging to generic space structures, such as columns of space frames or struts and ties of space trusses. The non-destructive method requires the knowledge of the beam-column flexural rigidity only. Flexural displacements are measured at five cross sections along the beam-column subjected to an additional vertical load at the mid-span. Unlike analogous dynamic methods, any set of experimental data may be used in the identification procedure. The method is verified by means of many numerical and experimental tests on beam-columns having unknown boundary conditions and different slenderness belonging to three different space prototypes in small-scale. Excellent estimates of the tensile and compressive forces are obtained for the elements with higher slenderness and when the greatest possible distance between sensors is adopted. Moreover, the application of larger values of the vertical load and very accurate displacement measurements are required. The method could be an efficacious technique in-situ, considering that safety inspections will become increasingly important in the near future, especially because of the improvement of the material properties that allowed designing space structures composed of beam-columns with higher slenderness.Keywords: force identification, in-situ test, space structure, static test
Procedia PDF Downloads 2451436 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta
Procedia PDF Downloads 2691435 From Risk/Security Analysis via Timespace to a Model of Human Vulnerability and Human Security
Authors: Anders Troedsson
Abstract:
For us humans, risk and insecurity are intimately linked to vulnerabilities - where there is vulnerability, there is potentially risk and insecurity. Reducing vulnerability through compensatory measures means decreasing the likelihood of a certain external event be qualified as a risk/threat/assault, and thus also means increasing the individual’s sense of security. The paper suggests that a meaningful way to approach the study of risk/ insecurity is to organize thinking about the vulnerabilities that external phenomena evoke in humans as perceived by them. Such phenomena are, through a set of given vulnerabilities, potentially translated into perceptions of "insecurity." An ontological discussion about salient timespace characteristics of external phenomena as perceived by humans, including such which potentially can be qualified as risk/threat/assault, leads to the positing of two dimensions which are central for describing what in the paper is called the essence of risk/threat/assault. As is argued, such modeling helps analysis steer free of the subjective factor which is intimately connected to human perception and which mediates between phenomena “out there” potentially identified as risk/threat/assault, and their translation into an experience of security or insecurity. A proposed set of universally given vulnerabilities are scrutinized with the help of the two dimensions, resulting in a modeling effort featuring four realms of vulnerabilities which together represent a dynamic whole. This model in turn informs modeling on human security.Keywords: human vulnerabilities, human security, immediate-inert, material-immaterial, timespace
Procedia PDF Downloads 2971434 Powering Connections: Synergizing Sales and Marketing for Electronics Engineering with Web Development.
Authors: Muhammad Awais Kiani, Abdul Basit Kiani, Maryam Kiani
Abstract:
Synergizing Sales and Marketing for Electronics Engineering with Web Development, explores the dynamic relationship between sales, marketing, and web development within the electronics engineering industry. This study is important for the power of digital platforms to connect with customers. Which increases brand visibility and drives sales. It highlights the need for collaboration between sales and marketing teams, as well as the integration of web development strategies to create seamless user experiences and effective lead generation. Furthermore, It also emphasizes the role of data analytics and customer insights in optimizing sales and marketing efforts in the ever-evolving landscape of electronics engineering. Sales and marketing play a crucial role in driving business growth, and in today's digital landscape, web development has become an integral part of these strategies. Web development enables businesses to create visually appealing and user-friendly websites that effectively showcase their products or services. It allows for the integration of e-commerce functionalities, enabling seamless online transactions. Furthermore, web development helps businesses optimize their online presence through search engine optimization (SEO) techniques, social media integration, and content management systems. This abstract highlights the symbiotic relationship between sales marketing in the electronics industry and web development, emphasizing the importance of a strong online presence in achieving business success.Keywords: electronics industry, web development, sales, marketing
Procedia PDF Downloads 1161433 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 1021432 Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples
Authors: Zelalem Bitew, Adane Kassa, Beyene Misgan
Abstract:
In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples.Keywords: gallic acid, diphenyl amine sulfonic acid, adsorptive anodic striping square wave voltammetry, honey, peanut
Procedia PDF Downloads 781431 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing
Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo
Abstract:
Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.Keywords: model, shale gas, concentration, organic compounds
Procedia PDF Downloads 2261430 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions
Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos
Abstract:
Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction
Procedia PDF Downloads 701429 Thick Disc Molecular Gas Fraction in NGC 6946
Authors: Narendra Nath Patra
Abstract:
Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consists of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cube and spectral width profile. We find that the simulated spectral width profiles distinguishably differs for different assumed thick disc molecular gas fraction. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 +/- 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find 60% of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ~ 35% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution.Keywords: galaxies: kinematics and dynamic, galaxies: spiral, galaxies: structure , ISM: molecules, molecular data
Procedia PDF Downloads 1441428 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults
Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer
Abstract:
Safety and security of autonomous vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, the paper proposes fault-tolerance by diversity model takes into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.Keywords: autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security
Procedia PDF Downloads 1281427 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 561426 E-Payments, COVID-19 Restrictions, and Currency in Circulation: Thailand and Turkey
Authors: Zeliha Sayar
Abstract:
Central banks all over the world appear to be focusing first and foremost on retail central bank digital currency CBDC), i.e., digital cash/money. This approach is predicated on the belief that the use of cash has decreased, owing primarily to technological advancements and pandemic restrictions, and that a suitable foundation for the transition to a cashless society has been revealed. This study aims to contribute to the debate over whether digital money/CBDC can be a substitute or supplement to physical cash by examining the potential effects on cash demand. For this reason, this paper compares two emerging countries, Turkey, and Thailand, to demystify the impact of e-payment and COVID-19 restrictions on cash demand by employing fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), and the canonical cointegrating regression (CCR). The currency in circulation in two emerging countries, Turkey and Thailand, was examined in order to estimate the elasticity of different types of retail payments. The results demonstrate that real internet and mobile, cart, contactless payment, and e-money are long-term determinants of real cash demand in these two developing countries. Furthermore, with the exception of contactless payments in Turkey, there is a positive relationship between the currency in circulation and the various types of retail payments. According to findings, COVID-19 restrictions encourage the demand for cash, resulting in cash hoarding.Keywords: CCR, DOLS, e-money, FMOLS, real cash
Procedia PDF Downloads 1051425 Utilities as Creditors: The Effect of Enforcement of Water Bill Payment in Zambia
Authors: Elizabeth Spink
Abstract:
Providing safe and affordable drinking water to low-income households in developing countries remains a challenge. Policy goals of increasing household piped-water access and cost recovery for utility providers are often at odds. Nonpayment of utility bills is frequently cited as a constraint to improving the quality of utility service. However, nonpayment is widely tolerated, and households often accumulate significant debt to the utility provider. This study examines the effect of enforcement of water bill payment through supply disconnections in Livingstone, Zambia. This research uses a dynamic model of household monthly payments and accumulation of arrears, which determine the probability of disconnection, and simulates the effect of exogenous changes in enforcement levels. This model is empirically tested using an event-study framework of exogenous increases in enforcement capacity that occur during administrative rezoning events, which reduce the number of households that one enforcement agent is responsible for. The results show that households are five percentage points more likely to make a payment in the months following a rezoning event, but disconnections for low-income households increase as well, resulting in little change in revenue collected by the water utility. The results suggest that high enforcement of water bill payments toward credit-constrained households may be ineffective and lead to reduced piped-water access.Keywords: enforcement, nonpayment, piped-water access, water utilities
Procedia PDF Downloads 2451424 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 961423 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM
Authors: Clement Leroy, Guillaume Boitel
Abstract:
This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery
Procedia PDF Downloads 2051422 Digital Innovation and Business Transformation
Authors: Bisola Stella Sonde
Abstract:
Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.Keywords: business transformation, digital innovation, emerging technologies, organizational structures
Procedia PDF Downloads 601421 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump
Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun
Abstract:
A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation
Procedia PDF Downloads 304